Skip to main content

Advertisement

Log in

Detecting the effect of water level fluctuations on water quality impacting endangered fish in a shallow, hypereutrophic lake using long-term monitoring data

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Water level fluctuations (WLFs) affect phytoplankton dynamics, water quality, and fish populations in lakes and reservoirs around the world. However, such effects are system-specific and vary due to interactions with other external factors such as solar radiation, air temperature, wind, and external phosphorus loading. Utilizing data from a long-term monitoring program (1990–2016), we developed an approach using cross-tabulation contour and conditional probability analyses to detect the effects of WLFs on the frequency of poor water quality impacting native fish in a large, shallow, hypereutrophic lake. Through the incorporation of long-term inter-annual and seasonal variability in climatic factors and cyanobacterial bloom periodicity, our approach detected non-linear WLF effects whereby both high and low-lake levels were associated with higher probabilities of poor water quality conditions stressful to fish including high pH, high un-ionized ammonia, and low dissolved oxygen. Although lake level management may not prevent poor water quality in any given year due to other external factors such as temperature or wind, we determined that seasonally based intermediate lake levels bracketing the long-term median afforded the best water quality conditions for endangered fish during the summer period when poor water quality is most common.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bakker, E. S. & S. Hilt, 2016. Impact of water-level fluctuations on cyanobacterial blooms: options for management. Aquatic Ecology 50: 485–498.

    CAS  Google Scholar 

  • Banish, N. P., B. J. Adams, R. S. Shively, M. M. Mazur, D. A. Beauchamp & T. T. Wood, 2009. Distribution and habitat associations of radio-tagged adult Lost River suckers and shortnose suckers in Upper Klamath Lake, Oregon. Transactions of the American Fisheries Society 138: 153–168.

    Google Scholar 

  • Barica, J., 1978. Collapses of Aphanizomenon flos-aquae blooms resulting in massive fish kills in eutrophic lakes, effects of weather. Verhandlungen der Internationalen Vereinigung für Theoretische und Angewandte Limnologie 20: 208–213.

    Google Scholar 

  • Borics, G., L. Nagy, S. Miron, I. Grigorszky, Z. László-Nagy, B. A. Lukács, L. G. Toth & G. Várbíró, 2013. Which factors affect phytoplankton biomass in shallow eutrophic lakes? Hydrobiologia 714: 93–104.

    CAS  Google Scholar 

  • Bradbury, J. P., S. M. Colman & R. L. Reynolds, 2004. The history of recent limnological changes and human impact on Upper Klamath Lake, Oregon. Journal of Paleolimnology 31: 151–161.

    Google Scholar 

  • Brylinsky, M. & K. H. Mann, 1973. An analysis of factors governing productivity in lakes and reservoirs. Limnology and Oceanography 18: 1–14.

    CAS  Google Scholar 

  • Conover, W. J. & R. L. Iman, 1979. On multiple-comparisons procedures. Tech. Rep. LA-7677-MS, Los Alamos Scientific Laboratory. https://permalink.lanl.gov/object/tr?what=info:lanl-repo/lareport/LA-07677-MS

  • Dodds, W. K., C. T. Robinson, E. E. Gaiser, G. J. A. Hansen, H. Powell, J. M. Smith, N. B. Morse, S. L. Johnson, S. V. Gregory, T. Bell, T. K. Kratz & W. H. McDowell, 2012. Surprises and insights from long-term aquatic data sets and experiments. BioScience 62: 709–721.

    Google Scholar 

  • Duff, J. H., K. D. Carpenter, D. T. Snyder, K. K. Lee, R. J. Avanzino & F. J. Triska, 2009. Phosphorus and nitrogen legacy in a restoration wetland, upper Klamath Lake, Oregon. Wetlands 29: 735–746.

    Google Scholar 

  • Eaton, A. D., L. S. Clesceri & A. E. Greenburg, 1995. Standard methods for the examination of water and wastewater. American Public Health Association, United Book Press Inc, Baltimore.

    Google Scholar 

  • Eilers, J. M., J. Kann, J. Cornett, K. Moser & A. St. Amand, 2004. Paleolimnological evidence of a change in a shallow, hypereutrophic lake: Upper Klamath Lake, Oregon. Hydrobiologia 520: 7–18.

    CAS  Google Scholar 

  • Fee, E. J., 1979. A relation between lake morphometry and primary productivity and its use in interpreting whole-lake eutrophication experiments. Limnology and Oceanography 24: 401–416.

    CAS  Google Scholar 

  • Goetz, D., L. E. Miranda, R. Kröger & C. Andrews, 2014. The role of depth in regulating water quality and fish assemblages in oxbow lakes. Environmental Biology of Fishes 98: 951–959.

    Google Scholar 

  • Gorham, E., 1964. Morphometric control of annual heat budgets in temperate lakes. Limnology and Oceanography 9: 525–529.

    Google Scholar 

  • Hamilton, S. K., 2012. Biogeochemical time lags may delay responses of streams to ecological restoration. Freshwater Biology 57: 43–57.

    Google Scholar 

  • Havens, K. E., 1994. Relationships of annual chlorophyll a means, maxima and bloom frequencies and intensities in a shallow eutrophic lake (Lake Okeechobee, Florida, U.S.A.). Lake and Reservoir Management 10: 133–138.

    Google Scholar 

  • Havens, K. E. & G. Ji, 2018. Multiyear oscillations in depth affect water quality in Lake Apopka. Inland Waters 8: 1–9.

    CAS  Google Scholar 

  • Havens, K. E., G. Ji, J. R. Beaver, R. S. Fulton & C. E. Teacher, 2017. Dynamics of cyanobacteria blooms are linked to the hydrology of shallow Florida lakes and provide insight into possible impacts of climate change. Hydrobiologia 829: 43–59.

    Google Scholar 

  • Heiskary, S. A. & W. W. Walker, 1988. Developing phosphorus criteria for Minnesota lakes. Lake and Reservoir Management 4: 1–10.

    Google Scholar 

  • Helsel, D. R. & R. M. Hirsch, 2002. Statistical Methods in Water Resources. Techniques of Water Resources Investigations, Book 4, Chapter A3. U.S. Geological Survey. 522 pp. https://pubs.er.usgs.gov/publication/twri04A3

  • Hollister, J. W. & B. J. Kreakie, 2016. Associations between chlorophyll a and various microcystin health advisory concentrations. F1000Research 5: 151.

    PubMed  PubMed Central  Google Scholar 

  • Hollister, J. W., H. A. Walker & J. F. Paul, 2008. CProb: a computational tool for conducting conditional probability analysis. Journal of Environmental Quality 37: 2392–2396.

    CAS  PubMed  Google Scholar 

  • Holm, S., 1979. A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics 6: 65–70.

    Google Scholar 

  • Huisman, J., P. van Oostveen & F. J. Weissing, 1999. Species dynamics in phytoplankton blooms: incomplete mixing and competition for light. The American Naturalist 154: 46–68.

    PubMed  Google Scholar 

  • Huisman, J., J. Sharples, J. M. Stroom, P. M. Visser, W. E. A. Kardinaal, J. M. H. Verspagen & B. Sommeijer, 2004. Changes in turbulent mixing shift competition for light between phytoplankton species. Ecology 85: 2960–2970.

    Google Scholar 

  • IMST, 2003. Independent Multidisciplinary Science Team Review of the USFWS and NMFS 2001 Biological Opinions on Management of the Klamath Reclamation Project and related reports. Technical Report 2003-1 to the Oregon Plan for Salmon and Watersheds, Oregon Watershed Enhancement Board, Salem, Oregon. https://ir.library.oregonstate.edu/concern/technical_reports/1z40ks932

  • Jeppesen, E., M. Søndergaard, J. P. Jensen, E. Mortensen, A.-M. Hansen & T. Jørgensen, 1998. Cascading trophic interactions from fish to bacteria and nutrients after reduced sewage loading: an 18-year study of a shallow hypertrophic lake. Ecosystems 1: 250–267.

    CAS  Google Scholar 

  • Jeppesen, E., J. P. Jensen, M. Søndergaard, T. Lauridsen & F. Landkildehyus, 2000. Trophic structure, species richness and biodiversity in Danish lakes: changes along a phosphorus gradient. Freshwater Biology 45: 201–218.

    CAS  Google Scholar 

  • Jeppesen, E., S. Brucet, L. Naselli-Flores, E. Papastergiadou, K. Stefanidis, T. Nõges, P. Nõges, J. L. Attayde, T. Zohary, J. Coppens, T. Bucak, R. F. Menezes, F. R. S. Freitas, M. Kernan, M. Søndergaard & M. Beklioglu, 2015. Ecological impacts of global warming and water abstraction on lakes and reservoirs due to changes in water level and related changes in salinity. Hydrobiologia 750: 201–227.

    Google Scholar 

  • Ji, G. & K. E. Havens, 2019. Periods of extreme shallow depth hinder but do not stop long-term improvements of water quality in Lake Apopka, Florida (USA). Water 11: 538.

    CAS  Google Scholar 

  • Kangur, K., A. Kangur, P. Kangur & R. Laugaste, 2005. Fish kill in Lake Peipsi in summer 2002 as a synergistic effect of a cyanobacterial bloom, high temperature, and low water level. Proceedings of the Estonian Academy of Sciences, Biology, Ecology 54: 67–80.

    Google Scholar 

  • Kangur, K., P. Kangur, K. Ginter, K. Orru, M. Haldna, T. Möls & A. Kangur, 2013. Long-term effects of extreme weather events and eutrophication on the fish community of shallow Lake Peipsi (Estonia/Russia). Journal of Limnology 72: 376–387.

    Google Scholar 

  • Kangur, K., K. Ginter, P. Kangur, A. Kangur, P. Nõges & A. Laas, 2016. Changes in water temperature and chemistry preceding a massive kill of bottom-dwelling fish: an analysis of high-frequency buoy data of shallow Lake Võrtsjärv (Estonia). Inland Waters 6: 535–542.

    CAS  Google Scholar 

  • Kann, J., 1998. Ecology and water quality dynamics of a shallow hypereutrophic lake dominated by Cyanobacteria (Aphanizomenon flos-aquae). Doctoral Dissertation. University of North Carolina. Curriculum in Ecology. Chapel Hill, North Carolina.

  • Kann, J., 2017. Upper Klamath Lake 2016 Data Summary Report. Technical Memorandum Prepared by Aquatic Ecosystem Sciences LLC for the Klamath Tribes Natural Resources Department, Chiloquin Oregon. 74 p. May 2017.

  • Kann, J. & V. H. Smith, 1999. Estimating the probability of exceeding elevated pH values critical to fish populations in a hypereutrophic lake. Canadian Journal of Fisheries and Aquatic Sciences 56: 2262–2270.

    Google Scholar 

  • Kann, J. & E. B. Welch, 2005. Wind control on water quality in shallow, hypereutrophic Upper Klamath Lake, Oregon. Lake and Reservoir Management 21: 149–158.

    CAS  Google Scholar 

  • Kirillin, G. & T. Shatwell, 2016. Generalized scaling of seasonal thermal stratification in lakes. Earth-Science Reviews 161: 179–190.

    Google Scholar 

  • Klamath Tribes, 2013a. Standard Operating Procedures (SOP) for Upper Klamath Lake Water Quality Field Sampling. Revision: 2013 v 0). Klamath Tribes Research Station, Klamath Tribes Natural Resources Department, Chiloquin, OR.

  • Klamath Tribes, 2013b. Quality Assurance Project Plan (QAPP). Revision: 2013 v 0. Klamath Tribes Research Station, Klamath Tribes Natural Resources Department, Chiloquin, OR.

  • Koski-Vähälä, J. & H. Hartikainen, 2001. Assessment of the risk of phosphorus loading due to resuspended sediment. Journal of Environmental Quality 30: 960–966.

    PubMed  Google Scholar 

  • Laenen, A. & A. P. LeTourneau, 1996. Upper Klamath Basin nutrient-loading study–estimate of wind-induced resuspension of bed sediment during periods of low lake elevation. U.S. Geological Survey Open-File Report 95-414. Portland, Oregon. https://pubs.er.usgs.gov/publication/ofr95414

  • Lindenmayer, D. B., G. E. Likens, A. Andersen, D. Bowman, C. M. Bull, E. Burns, C. R. Dickman, A. A. Hoffmann, D. A. Keith, M. J. Liddell, A. J. Lowe, D. J. Metcalfe, S. R. Phinn, J. Russell-Smith, N. Thurgate & G. M. Wardle, 2012. Value of long-term ecological studies. Austral Ecology 37: 745–757.

    Google Scholar 

  • Lindon, M. J. & S. A. Heiskary, 2009. Blue-green algal toxin (microcystin) levels in Minnesota lakes. Lake and Reservoir Management 25: 240–252.

    Google Scholar 

  • Livingstone, D. M. & D. M. Imboden, 1996. The prediction of hypolimnetic oxygen profiles: a plea for a deductive approach. Canadian Journal of Fisheries and Aquatic Sciences 53: 924–932.

    Google Scholar 

  • Loftus, M. E. 2001. Assessment of Potential Water Quality stress to Fish. Supplement to: Effects of Water Quality and Lake Level on the Biology and Habitat of Selected Fish Species in Upper Klamath Lake. Prepared by R2 Resources Consultants, Redmond, WA, for the Bureau of Indian Affairs, U.S. Dept. of the Interior, Portland, OR. 65 p.

  • Mackay, E. B., A. M. Folkard & I. D. Jones, 2014. Interannual variations in atmospheric forcing determine trajectories of hypolimnetic soluble reactive phosphorus supply in a eutrophic lake. Freshwater Biology 59: 1646–1658.

    CAS  Google Scholar 

  • Mericas, C. & R. F. Malone, 1984. A phosphorus-based fish kill response function for use with stochastic lake models. North American Journal of Fisheries Management 4: 556–565.

    Google Scholar 

  • Meyer, J. S., H. M. Lease & H. L. Bergman, 2000. Chronic toxicity of low dissolved oxygen concentrations, elevated pH, and elevated ammonia concentrations to lost river suckers (Deltistes luxatus), and swimming performance of lost river suckers at various temperatures. Prepared by University of Wyoming, Dept. of Zoology and Physiology for the U.S. Dept. of the Interior, Bureau of Reclamation. Laramie, Wyoming. 56 pp. http://digitallib.oit.edu/digital/collection/kwl/id/3007/

  • Miranda, L. E., J. A. Hargreaves & S. W. Raborn, 2001. Predicting and managing risk of unsuitable dissolved oxygen in a eutrophic lake. Hydrobiologia 57: 177–185.

    Google Scholar 

  • Morace, J. L., 2007. Relation between selected water-quality variables, climatic factors and lake levels in Upper Klamath and Agency Lakes, Oregon, 1990-2006. U.S. Geological Survey, Scientific Investigation Report 2007-5117, 54 pp. https://pubs.usgs.gov/sir/2007/5117/

  • Moreno-Ostos, E., L. Cruz-Pizarro, A. Basanta & D. George, 2009. The influence of wind-induced mixing on the vertical distribution of buoyant and sinking phytoplankton species. Aquatic Ecology 43: 271–284.

    CAS  Google Scholar 

  • Mueller, H., D. P. Hamilton & G. J. Doole, 2015. Response lags and environmental dynamics of restoration efforts for Lake Rotorua. New Zealand Environmental Research Letters 10: 074003.

    Google Scholar 

  • Naselli-Flores, L., 2003. Man-made lakes in Mediterranean semi-arid climate: the strange case of Dr Deep Lake and Mr Shallow Lake. Hydrobiologia 506: 13–21.

    Google Scholar 

  • Nõges, P. & A. Järvet, 1995. Water level control over light conditions in shallow lakes. Report Series in Geophysics. University of Helsinki 32: 81–92.

    Google Scholar 

  • Nõges, T. & P. Nõges, 1999. The effect of extreme water level decrease on hydrochemistry and phytoplankton in a shallow eutrophic lake. Hydrobiologia 408: 277–283.

    Google Scholar 

  • Nõges, P., T. Nõges, J. Haberman, R. Laugaste & V. Kisand, 1997. Tendencies and relations in the plankton community and pelagic environment of Lake Võrtsjärv during three decades. Proceedings of the Estonian Academy of Sciences, Ecology 7(1/2): 40–58.

    Google Scholar 

  • Nõges, T., P. Nõges & R. Laugaste, 2003. Water level as the mediator between climate change and phytoplankton composition in a large shallow temperate lake. Hydrobiologia 506: 257–263.

    Google Scholar 

  • Nõges, T., A. Jarvet, A. Kisand, R. Laugaste, E. Loigu, B. Skakalski & P. Nõges, 2007. Reaction of large and shallow lakes Peipsi and Vortsjarv to the changes of nutrient loading. Hydrobiologia 584: 253–264.

    Google Scholar 

  • Nõges, P., M. Ute, L. Reet & A. G. Solimini, 2010. Analysis of changes over 44 years in the phytoplankton of Lake Võrtsjärv (Estonia): the effect of nutrients, climate and the investigator on phytoplankton-based water quality indices. Hydrobiologia 646: 33–48.

    Google Scholar 

  • NRC, 2004. Endangered and Threatened Fishes in the Klamath River Basin. The National Academies Press, Washington, DC.

    Google Scholar 

  • ODEQ, 2002. Upper Klamath Lake Drainage Total Maximum Daily Load (TMDL) and Water Quality Management Plan (WQMP). State of Oregon Dept. of Environmental Quality, Portland, Oregon. 204 p. https://www.oregon.gov/deq/FilterDocs/UKtmdlwqmp.pdf

  • Pace, M. L. & Y. T. Prairie, 2005. Respiration in lakes. In del Giorgio, P. & P. Williams (eds), Respiration in Aquatic Ecosystems. Oxford University Press, New York: 103–121.

    Google Scholar 

  • Padisák, J. & C. S. Reynolds, 2003. Shallow lakes: the absolute, the relative, the functional and the pragmatic. Hydrobiologia 506: 1–11.

    Google Scholar 

  • Paerl, H. W. & T. G. Otten, 2013. Harmful cyanobacterial blooms: causes, consequences, and controls. Microbial Ecology 65: 995–1010.

    CAS  PubMed  Google Scholar 

  • Paerl, H. W., W. S. Gardner, K. E. Havens, A. R. Joyner, M. J. McCarthy, S. E. Newell, B. Qin & J. T. Scott, 2016. Mitigating cyanobacterial harmful algal blooms in aquatic ecosystems impacted by climate change and anthropogenic nutrients. Harmful Algae 54: 213–222.

    PubMed  Google Scholar 

  • Paul, J. F. & M. E. McDonald, 2005. Development of empirical, geographically specific water quality criteria: a conditional probability analysis approach. Journal of the American Water Resources Association 41: 1211–1223.

    CAS  Google Scholar 

  • Paul, J. F. & W. R. Munns, 2011. Probability surveys, conditional probability, and ecological risk assessment. Environmental Toxicology and Chemistry 30: 1488–1495.

    CAS  PubMed  Google Scholar 

  • Paul, J. F., M. E. McDonald & S. F. Hedtke, 2008. Stream condition and infant mortality in U.S. mid-Atlantic states. Human and Ecological Risk Assessment 14: 721–741.

    Google Scholar 

  • Perkins, D. L., J. Kann & G. G. Scoppettone, 2000. The role of poor water quality and fish kills in the decline of endangered Lost River and shortnose suckers in Upper Klamath Lake. U.S. Geological Survey, Biological Resources Division. Prepared for U.S. Bureau of Reclamation, Klamath Falls Project Office, Klamath Falls, OR. http://www.usbr.gov/mp/kbao/esa/Fish_Kill.pdf

  • Rasmussen, J. E., 2011. Status of Lost River and shortnose sucker. Western North American Naturalist 71: 442–455.

    Google Scholar 

  • Reynolds, C. S., 2006. Ecology of Phytoplankton. Cambridge University Press, Cambridge: 535.

    Google Scholar 

  • Sayer, C. D., T. A. Davidson, R. Rawcliffe, P. G. Langdon, P. R. Leavitt, G. Cockerton, N. L. Rose & T. Croft, 2016. Consequences of fish kills for long-term trophic structure in shallow lakes: implications for theory and restoration. Ecosystems 19: 1289–1309.

    CAS  Google Scholar 

  • Scheffer, M., 2004. Ecology of Shallow Lakes. Kluwer Academic Publishers, London: 374.

    Google Scholar 

  • Sharpley, A., H. P. Jarvie, A. Buda, L. May, B. Spears & P. Kleinman, 2013. Phosphorus legacy: overcoming the effects of past management practices to mitigate future water quality impairment. Journal of Environmental Quality 42: 1308–1326.

    CAS  PubMed  Google Scholar 

  • Simon, N. S. & S. N. Ingle, 2011. Physical and chemical characteristics including total and geochemical forms of phosphorus in sediment from the top 30 centimeters of cores collected in October 2006 at 26 sites in Upper Klamath Lake, Oregon: U.S. Geological Survey Open-File Report 2011–1168, 49 pp. https://pubs.usgs.gov/of/2011/1168/

  • Snyder, D. T. & J. L. Morace, 1997. Nitrogen and phosphorus loading from drained wetlands adjacent to Upper Klamath and Agency Lakes, Oregon: U.S. Geological Survey Water Resources Investigations Report 97-4059. 67 pp. https://pubs.er.usgs.gov/publication/wri974059

  • Søndergaard, M., P. Kristensen & E. Jeppesen, 1992. Phosphorus release from resuspended sediment in the shallow and wind-exposed Lake Arreso, Denmark. Hydrobiologia 228: 91–99.

    Google Scholar 

  • Stevens, C. J. & D. D. Tullos, 2011. Effects of temperature and site characteristics on phosphorus dynamics in four restored wetlands: implications for wetland hydrologic management and restoration. Ecological Restoration 29: 279–291.

    Google Scholar 

  • Tammeorg, O., J. Niemistö, T. Möls, R. Laugaste, K. Panksep & K. Kangur, 2013. Wind-induced sediment resuspension as a potential factor sustaining eutrophication in large and shallow Lake Peipsi. Aquatic Sciences 75: 559–570.

    Google Scholar 

  • Tammeorg, O., R. Laugaste, M. Haldna, J. Horppila & J. Niemistö, 2015. Importance of diffusion and resuspension for phosphorus cycling during the growing season in large, shallow Lake Peipsi. Hydrobiologia 760: 133–144.

    CAS  Google Scholar 

  • USEPA, 2006. Framework for developing suspended and bedded sediments (sabs) water quality criteria. EPA-822-R-06-001. US EPA, Washington, DC. http://ofmpub.epa.gov/eims/eimscomm.getfile?p_download_id=460635

  • USEPA, 2013. Aquatic life ambient water quality criteria for ammonia—freshwater. EPA-822-R-18-002. US EPA, Washington, DC. https://www.epa.gov/sites/production/files/2015-08/documents/aquatic-life-ambient-water-quality-criteria-for-ammonia-freshwater-2013.pdf

  • USGS, 2017. U.S. Geological Survey National Water Information System data available on the World Wide Web (USGS Water Data for the Nation). Accessed September 7, 2017 [http://waterdata.usgs.gov/nwis/].

  • Van Meter, K. J. & N. B. Basu, 2015. Catchment legacies and time lags: a parsimonious watershed model to predict the effects of legacy storage on nitrogen export. PLoS ONE 10: e0125971.

    PubMed  PubMed Central  Google Scholar 

  • Walker Jr., W. W. & K. E. Havens, 1995. Relating algal bloom frequencies to phosphorus concentration in Lake Okeechobee. Lake and Reservoir Management 11: 77–83.

    Google Scholar 

  • Welch, E. B. & J. M. Jacoby, 2004. Pollutant Effects in Freshwater: Applied Limnology. Spon Press, London, 3rd Ed. 504 pp.

  • Wherry, S. A., T. M. Wood & C. W. Anderson, 2015. Revision and proposed modification of a total maximum daily load model for Upper Klamath Lake, Oregon: U.S. Geological Survey Scientific Investigations Report 2015–5041, 55 p. http://dx.doi.org/10.3133/sir20155041

  • Wherry, S. A. & T. M. Wood, 2018. A metabolism-based whole lake eutrophication model to estimate the magnitude and time scales of the effects of restoration in Upper Klamath Lake, south-central Oregon: U.S. Geological Survey Scientific Investigations Report 2018–5042, 43 p., https://doi.org/10.3133/sir20185042.

  • Wong, S. W., M. J. Barry, A. R. Aldous, N. T. Rudd, H. A. Hendrixson & C. M. Doehring, 2011. Nutrient release from a recently flooded delta wetland: comparison of field measurements to laboratory results. Wetlands 31: 433–443.

    Google Scholar 

  • Yang, J. R., H. Lv, J. Yang, L. Liu, X. Yu & H. Chen, 2016. Decline in water level boosts cyanobacteria dominance in subtropical reservoirs. Science of the Total Environment 557: 445–452.

    PubMed  Google Scholar 

  • Yang, J. R., H. Lv, A. Isabwe, L. Liu, X. Yu, H. Chen & J. Yang, 2017. Disturbance-induced phytoplankton regime shifts and recovery of cyanobacteria dominance in two subtropical reservoirs. Water Research 120: 52–63.

    CAS  PubMed  Google Scholar 

  • Zohary, T. & I. Ostrovsky, 2011. Ecological impacts of excessive water level fluctuations in stratified freshwater lakes. Inland Waters 1: 47–59.

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to the field and laboratory crews at the Klamath Tribes Natural Resources Department and Sprague River Water Quality Lab for their collection and analysis of field data as part of the Klamath Tribes’ long-term lake ecosystem monitoring program. We also thank William W. Walker, who provided review comments and whose earlier work this is an extension of, as well as two anonymous reviewers whose constructive comments greatly improved this paper. Funding for our analyses was provided by the U.S. Department of Interior, Bureau of Indian Affairs. The findings and conclusions in this report are those of the authors and do not necessarily represent the views of the funding agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacob Kann.

Ethics declarations

Conflict of interest

Analyses were completed as part of research to evaluate water levels necessary to support fish populations for the Klamath Tribes. Jacob Kann was previously employed by and has received research funding from the Klamath Tribes.

Additional information

Handling editor: Gideon Gal

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 6113 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kann, J., Walker, J.D. Detecting the effect of water level fluctuations on water quality impacting endangered fish in a shallow, hypereutrophic lake using long-term monitoring data. Hydrobiologia 847, 1851–1872 (2020). https://doi.org/10.1007/s10750-020-04215-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-020-04215-z

Keywords

Navigation