Skip to main content
Log in

Zinc-Formate Metal–Organic Frameworks: Watch Out for Reactive Solvents

  • Original Paper
  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

Three different formate-based metal–organic frameworks, [Zn(HCOO) 2 (Bip)], [H 2 N(CH 3 ) 2 ][Zn(HCOO) 3 ] and [Zn 2 (HCOO) 4 (H 2 O) 4 ], were obtained under solvothermal conditions in DMF. [Zn(HCOO) 2 (Bip)] is based on two ligands (formate and 4,4'-bipyridine), while [H 2 N(CH 3 ) 2 ][Zn(HCOO) 3 ] and [Zn 2 (HCOO) 4 (H 2 O) 4 ] only contain the formate ligand. The structural characterization of these compounds shows specific features for each of these networks. Importantly, the work presented herein proves that the formate is a result of DMF decomposition under the acidic solvothermal conditions used, a very relevant point that should be considered when planning solvothermal synthesis of MOFs with organic acids, such as azelaic acid.

Graphical Abstract

Three different formate-based metal–organic frameworks were obtained under solvothermal conditions in DMF. Structural characterization of these compounds shows specific features for each of these networks. The formate is a result of DMF decomposition under the acidic solvothermal conditions used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Chart 1
Chart 2
Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Janiak C, Vieth JK (2010) MOFs, MILs and more: concepts, properties and applications for porous coordination networks (PCNs). New J Chem 34(11):2366–2388

    Article  CAS  Google Scholar 

  2. Notash B, Safari N, Khavasi HR (2012) Anion-controlled structural motif in one-dimensional coordination networks via cooperative weak noncovalent interactions. CrystEngComm 14(20):6788–6796

    Article  CAS  Google Scholar 

  3. Keskin S, Kizilel S (2011) Biomedical applications of metal organic frameworks. Ind Eng Chem Res 50(4):1799–1812

    Article  CAS  Google Scholar 

  4. Horcajada P, Gref R, Baati T, Allan PK, Maurin G, Couvreur P, Ferey G, Morris RE, Serre C (2012) Metal-organic frameworks in biomedicine. Chem Rev 112(2):1232–1268

    Article  CAS  Google Scholar 

  5. Ferey G, Serre C (2009) Large breathing effects in three-dimensional porous hybrid matter: facts, analyses, rules and consequences. Chem Soc Rev 38(5):1380–1399

    Article  CAS  Google Scholar 

  6. Xiao B, Wheatley PS, Zhao X, Fletcher AJ, Fox S, Rossi AG, Megson IL, Bordiga S, Regli L, Thomas KM et al (2007) High-capacity hydrogen and nitric oxide adsorption and storage in a metal-organic framework. J Am Chem Soc 129(5):1203–1209

    Article  CAS  Google Scholar 

  7. Graetz J (2009) New approaches to hydrogen storage. Chem Soc Rev 38(1):73–82

    Article  CAS  Google Scholar 

  8. Mueller M, Zhang X, Wang Y, Fischer RA (2009) Nanometer-sized titania hosted inside MOF-5. Chem Commun 1:119–121

    Article  Google Scholar 

  9. Suh MP, Cheon YE, Lee EY (2008) Syntheses and functions of porous metallosupramolecular networks. Coord Chem Rev 252(8–9):1007–1026

    Article  CAS  Google Scholar 

  10. Han SS, Mendoza-Cortes JL, Goddard WA (2009) Recent advances on simulation and theory of hydrogen storage in metal-organic frameworks and covalent organic frameworks. Chem Soc Rev 38(5):1460–1476

    Article  CAS  Google Scholar 

  11. Dueren T, Bae Y-S, Snurr RQ (2009) Using molecular simulation to characterise metal-organic frameworks for adsorption applications. Chem Soc Rev 38(5):1237–1247

    Article  CAS  Google Scholar 

  12. Ma S, Sun D, Ambrogio M, Fillinger JA, Parkin S, Zhou H-C (2007) Framework-catenation isomerism in metal-organic frameworks and its impact on hydrogen uptake. J Am Chem Soc 129(7):1858–1859

    Article  CAS  Google Scholar 

  13. Uemura T, Ono Y, Kitagawa K, Kitagawa S (2008) Radical polymerization of vinyl monomers in porous coordination polymers: nanochannel size effects on reactivity, molecular weight, and stereostructure. Macromolecules 41(1):87–94

    Article  CAS  Google Scholar 

  14. Uemura T, Yanai N, Kitagawa S (2009) Polymerization reactions in porous coordination polymers. Chem Soc Rev 38(5):1228–1236

    Article  CAS  Google Scholar 

  15. Farrusseng D, Aguado S, Pinel C (2009) Metal-organic frameworks: opportunities for catalysis. Angew Chem Int Ed 48(41):7502–7513

    Article  CAS  Google Scholar 

  16. Lee J, Farha OK, Roberts J, Scheidt KA, Nguyen ST, Hupp JT (2009) Metal-organic framework materials as catalysts. Chem Soc Rev 38(5):1450–1459

    Article  CAS  Google Scholar 

  17. Allendorf MD, Bauer CA, Bhakta RK, Houk RJT (2009) Luminescent metal-organic frameworks. Chem Soc Rev 38(5):1330–1352

    Article  CAS  Google Scholar 

  18. Kurmoo M (2009) Magnetic metal-organic frameworks. Chem Soc Rev 38(5):1353–1379

    Article  CAS  Google Scholar 

  19. Evans OR, Lin WB (2002) Crystal engineering of NLO materials based on metal-organic coordination networks. Acc Chem Res 35(7):511–522

    Article  CAS  Google Scholar 

  20. Horcajada P, Serre C, Vallet-Regi M, Sebban M, Taulelle F, Ferey G (2006) Metal-organic frameworks as efficient materials for drug delivery. Angew Chem Int Ed 45(36):5974–5978

    Article  CAS  Google Scholar 

  21. Horcajada P, Serre C, Maurin G, Ramsahye NA, Balas F, Vallet-Regi M, Sebban M, Taulelle F, Ferey G (2008) Flexible porous metal-organic frameworks for a controlled drug delivery. J Am Chem Soc 130(21):6774–6780

    Article  CAS  Google Scholar 

  22. Ferey G (2008) Hybrid porous solids: past, present, future. Chem Soc Rev 37(1):191–214

    Article  CAS  Google Scholar 

  23. Millange F, Guillou N, Walton RI, Greneche J-M, Margiolaki I, Fereya G (2008) Effect of the nature of the metal on the breathing steps in MOFs with dynamic frameworks. Chem Comm 39:4732–4734

    Article  Google Scholar 

  24. Della Rocca J, Liu D, Lin W (2011) Nanoscale metal-organic frameworks for biomedical imaging and drug delivery. Acc Chem Res 44(10):957–968

    Article  CAS  Google Scholar 

  25. Hebert R (2004) Therapeutically improved salts of azelaic acid. United States Patent

  26. Liu RH, Smith MK, Basta SA, Farmer ER (2006) Azelaic acid in the treatment of papulopustular rosacea—a systematic review of randomized controlled trials. Arch Dermatol 142(8):1047–1052

    Article  CAS  Google Scholar 

  27. Caspari WA (1928) Crystallography of the aliphatic dicarboxylic acids. J Chem Soc 1928:3235–3241

    Article  Google Scholar 

  28. Housty J, Hospital M (1967) Structures des deux formes cristallines de l’acide azélaique COOH[CH2]7COOH. Acta Crystallogr 22:288

    Article  CAS  Google Scholar 

  29. Bond AD, Edwards MR, Jones W (2001) Azelaic acid. Acta Crystallogr E 57:o143–o144

    Article  CAS  Google Scholar 

  30. Thalladi VR, Nusse M, Boese R (2000) The melting point alternation in alpha, omega-alkanedicarboxylic acids. J Am Chem Soc 122(38):9227–9236

    Article  CAS  Google Scholar 

  31. Thompson LJ, Voguri RS, Male L, Tremayne M (2011) The crystal structures and melting point properties of isonicotinamide cocrystals with alkanediacids HO2C(CH2)(n-2)CO2H n = 7-9. CrystEngComm 13(12):4188–4195

    Article  CAS  Google Scholar 

  32. Edwards MR, Jones W, Motherwell WDS (2002) Influence of dicarboxylic acid structure on tape networks in co-crystals of 2-pyridone. Cryst Eng 5(1):25–36

    Article  CAS  Google Scholar 

  33. Braga D, Maini L, de Sanctis G, Rubini K, Grepioni F, Chierotti MR, Gobetto R (2003) Mechanochemical preparation of hydrogen-bonded adducts between the diamine 1,4-diazabicyclo 2.2.2 octane and dicarboxylic acids of variable chain length: an x-ray diffraction and solid-state NMR study. Chem Eur J 9(22):5538–5548

    Article  CAS  Google Scholar 

  34. Karki S, Friscic T, Jones W (2009) Control and interconversion of cocrystal stoichiometry in grinding: stepwise mechanism for the formation of a hydrogen-bonded cocrystal. CrystEngComm 11(3):470–481

    Article  CAS  Google Scholar 

  35. Aakeroy CB, Hussain I, Desper J (2006) 2-Acetaminopyridine: a highly effective cocrystallizing agent. Cryst Growth Des 6(2):474–480

    Article  Google Scholar 

  36. Lawniczak P, Pogorzelec-Glaser K, Pawlaczyk C, Pietraszko A, Szczesniak L (2009) New 2-methylimidazole-dicarboxylic acid molecular crystals: crystal structure and proton conductivity. J Phys Condens Matter 21(34):345403

    Article  CAS  Google Scholar 

  37. Braga D, Dichiarante E, Palladino G, Grepioni F, Chierotti MR, Gobetto R, Pellegrino L (2010) Remarkable reversal of melting point alternation by co-crystallization. CrystEngComm 12(11):3534–3536

    Article  CAS  Google Scholar 

  38. Aakeroy CB, Panikkattu SV, DeHaven B, Desper J (2012) Establishing supramolecular control over solid-state architectures: a simple mix and match strategy. Cryst Growth Des 12(5):2579–2587

    Article  CAS  Google Scholar 

  39. Bruker AXS (2005) SADABS bruker analytical systems. Bruker AXS Inc., Madison

    Google Scholar 

  40. Altomare A, Burla MC, Camalli M, Cascarano GL, Giacovazzo C, Guagliardi A, Moliterni AGG, Polidori G, Spagna R (1999) SIR97: a new tool for crystal structure determination and refinement. J Appl Crystallogr 32:115–119

    Article  CAS  Google Scholar 

  41. Sheldrick GM (2008) A short history of SHELX. Acta Crystallogr A 64:112–122

    Article  CAS  Google Scholar 

  42. Farrugia LJ (1999) WinGX suite for small-molecule single-crystal crystallography. J Appl Cryst 32:837–838

    Article  CAS  Google Scholar 

  43. Macrae CF, Bruno IJ, Chisholm JA, Edgington PR, McCabe P, Pidcock E, Rodriguez-Monge L, Taylor R, van de Streek J, Wood PA (2008) Mercury CSD 2.0—new features for the visualization and investigation of crystal structures. J Appl Crystallogr 41:466–470

    Article  CAS  Google Scholar 

  44. Spek AL (2009) Structure validation in chemical crystallography. Acta Crystallogr D 65:148–155

    Article  CAS  Google Scholar 

  45. Huh HS, Lee SW (2008) Unexpected formation of the cobalt-formate coordination polymer [Co3(HCO2)6].dmf from [Co(NO3)2 and 2,2′-bipyridine-5,5′-dicarboxylic acid in dmf-EtOH-H2O. Bull Korean Chem Soc 29(12):2383–2389

    Article  CAS  Google Scholar 

  46. Min D, Lee SW (2002) Terbium-oxalate-pyridinedicarboxylate coordination polymers suggesting the reductive coupling of carbon dioxide (CO2) to oxolate (C2O4 2−): [Tb2 (3,5-PDC)2(H2O)4(C2O4)].2H2O and [Tb(2,4-PDC)(H2O)(C2O4)0.5] (PDC = pyridinedicarboxylate). Inorg Chem Commun. 5(11):978–983

    Article  CAS  Google Scholar 

  47. Yan Y, Wu CD, Lu CZ (2003) Hydrothermal synthesis of two new transition metal coordination polymers with mixed ligands. Z Anorg Allg Chem 629(11):1991–1995

    Article  CAS  Google Scholar 

  48. Huh HS, Lee SW (2006) Lanthanide-oxalate coordination polymers formed by reductive coupling of carbon dioxide to oxalate: [Ln2(3,5-pdc)2(C2O4)(H2O)4]·2H2O (Ln = Eu, Sm, Ho, Dy; pdc = pyridinedicarboxylate). Bull Korean Chem Soc 27(11):1839–1843

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors acknowledge funding to Fundação para a Ciência e a Tecnologia (PTDC/CTM-BPC/122447/2010, PEST-OE/QUI/UI0100/2013, RECI/QEQ-QIN70189/2012 and SFRH/BPD/78854/2011).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vânia André or M. Teresa Duarte.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quaresma, S., André, V., Martins, M. et al. Zinc-Formate Metal–Organic Frameworks: Watch Out for Reactive Solvents. J Chem Crystallogr 45, 178–188 (2015). https://doi.org/10.1007/s10870-015-0578-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10870-015-0578-y

Keywords

Navigation