Skip to main content

Advertisement

Log in

Influence of Atmospheric Pressure Non-thermal Plasma on Inactivation of Biofilm Cells

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

The objective of this study is to investigate the bactericidal efficiency of atmospheric pressure non-thermal (cold) dielectric barrier discharge plasma on biofilms of Staphylococcus aureus and Escherichia coli. In general, cold plasma is a mixture of electrons, ions, neutral atoms and molecules. The different particles in cold plasmas exhibit different energies, i.e. electrons are much more energetic than other particles. This feature of cold plasmas allows to produce chemically reactive species at near room temperature that can be used in biological applications. Bacteria inactivation was performed using the air direct plasma (with reactive species, UV light, excited species and electric fields). Discharge power density during the experiment was equal to 70 mW/cm2 and plasma dose was regulated by the treatment time. Bacterial biofilms were treated with the non-thermal plasma for 10–300 s. The most effective reduction in the number of S. aureus cells was found after 300 s of treatment and was 2.77 log10 that is 99.83%. When the biofilm of E. coli was used in the experiment, killing of bacteria was independent of the exposure time and the mortality of cells did not exceed 0.48 that is 66.7% kill. The lethal effect on E. coli and S. aureus cells were observed after 300 and 120 s of plasma treatment, respectively but it was necessary to remove the layers of dead cells. The proposed process of removing dead cell layers was carried out due to the probable shielding effect, i.e. dead cells prevent further penetration of active plasma species into the deeper layers of the biofilm. It was shown that the effectiveness of cell destruction by the non-thermal plasma depends on the thickness of biofilm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Fridman A, Chirokov A, Gutsol A (2005) J Phys D Appl Phys 38:R1–R24

    Article  CAS  Google Scholar 

  2. Kacprzyk R, Czapka T (2016) Int J Plasma Environ Sci Technol 10:131–134

    Google Scholar 

  3. Czapka T, Mirkowska A, Palewicz M (2017) Prz Elektrotech 93:188–191

    Google Scholar 

  4. Stoffels E, Flikweert AJ, Stoffels WW, Kroesen GMW (2002) Plasma Sources Sci Technol 11:383–388

    Article  CAS  Google Scholar 

  5. Barekzi N, Laroussi M (2013) Plasma Process 10:1039–1050

    Article  CAS  Google Scholar 

  6. Nosenko T, Shimizu T, Morfill GE (2009) New J Phys 11:115013

    Article  CAS  Google Scholar 

  7. Ermolaeva SA, Varfolomeev AF, Chernukha MY, Yurov DS, Vasiliev MM, Kaminskaya AA et al (2011) J Med Microbiol 60:75–83

    Article  CAS  PubMed  Google Scholar 

  8. Laroussi M (2005) Plasma Process Polym 2:391–400

    Article  CAS  Google Scholar 

  9. Moisan M, Barbeau J, Moreau S, Pelletier J, Tabrizian M, Yahia LH (2001) Int J Pharm 226:1–21

    Article  CAS  PubMed  Google Scholar 

  10. Kordas L, Pusz W, Czapka T, Kacprzyk R (2015) Pol J Environ Stud 24:433–438

    CAS  Google Scholar 

  11. Keidar M (2015) Plasma Sources Sci Technol 24:033001

    Article  CAS  Google Scholar 

  12. Fridman G, Shereshevsky A, Jost M, Brooks A, Fridman A, Gutsol A, Vasilets V, Friedman G (2007) Plasma Chem Plasma Process 27:163–176

    Article  CAS  Google Scholar 

  13. Fridman G, Peddinghaus M, Ayan H, Fridman A, Balasubramanian M, Gutsol A, Brooks A, Friedman G (2006) Plasma Chem Plasma Process 26:425–442

    Article  CAS  Google Scholar 

  14. Characklis WG, Marshall KC (1990) Biofilms. Wiley, New York

    Google Scholar 

  15. Costerton JW (1999) Int J Antimicrob Agents 11:217–221

    Article  CAS  PubMed  Google Scholar 

  16. Heydorn A, Ersboll B, Hentzer M et al (2000) Microbiology 146:2409–2415

    Article  CAS  PubMed  Google Scholar 

  17. Jamal M, Tasneem U, Hussain T, Andleeb S (2015) Res Rev J Microbiol Biotechnol 4:1–14

    CAS  Google Scholar 

  18. Goldberg J (2002) Trends Microbiol 10:264–266

    Article  CAS  Google Scholar 

  19. Peng JS, Tsai WC, Chou CC (2002) Int J Food Microbiol 77:11–18

    Article  CAS  PubMed  Google Scholar 

  20. Chen MJ, Zhang Z, Bott TR (1998) Biotechnol Tech 12:875–880

    Article  CAS  Google Scholar 

  21. Dalton HM, March PE (1998) Curr Opin Biotechnol 9:252–255

    Article  CAS  PubMed  Google Scholar 

  22. Yoo JA, Chen XD (2002) Int J Food Microbiol 73:11–21

    Article  CAS  PubMed  Google Scholar 

  23. Verran J, Jones M (2000) Industrial biofouling. Wiley, New York

    Google Scholar 

  24. Ganesh CK, Anand SK (1998) Int J Food Microbiol 42:9–27

    Article  Google Scholar 

  25. Bott TR (1998) Appl Therm Eng 18:1059–1066

    Article  CAS  Google Scholar 

  26. Nemati M, Jenneman GE, Voordouw G (2001) Biotechnol Bioeng 74:424–430

    Article  CAS  PubMed  Google Scholar 

  27. Klahre J, Flemming HC (2000) Water Res 34:3657–3665

    Article  CAS  Google Scholar 

  28. Liesegang TJ (1997) Cornea 16:265–273

    CAS  PubMed  Google Scholar 

  29. Marotta M, Martino A, De Rosa A et al (2002) Process Biochem 38:101–108

    Article  CAS  Google Scholar 

  30. Durack DT, Beeson PB (1972) Br J Exp Pathol 53:50–53

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Podschun R, Ullmann U (1998) Clin Microbiol Rev 11:589–603

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Peleg AY, Hooper DC (2010) N Engl J Med 362:1804–1813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sydnor ER, Perl TM (2011) Clin Microbiol Rev 24:141–173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. World Health Organization (2014) Antimicrobial resistance: global report on surveillance. Geneva. http://apps.who.int/iris/bitstream/10665/112642/1/9789241564748_eng.pdf?ua=1

  35. Bourke P, Ziuzina D, Han L, Cullen PJ, Gilmore BF (2017) J Appl Microb 123:308–324

    Article  CAS  Google Scholar 

  36. Brun P, Bernabè G, Marchiori C, Scarpa M, Zuin M, Cavazzana R, Zaniol B, Martines E (2018) J Appl Microb. https://doi.org/10.1111/jam.13780

    Article  Google Scholar 

  37. Joshi SG, Cooper M, Yost A, Paff M, Ercan UK, Fridman G, Friedman G, Fridman A, Brooks AD (2011) Antimicrob Agents Chemother 55:1053–1062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Dobrynin D, Fridman G, Friedman G, Fridman A (2009) New J Phys 11:115020

    Article  CAS  Google Scholar 

  39. Goree J, Liu B, Drake D (2006) J Phys D Appl Phys 39:3479–3486

    Article  CAS  Google Scholar 

  40. Xiao DZ, Cheng C, Lan Y, Ni GH, Shen J, Meng YD, Chu PK (2016) IEEE Trans Plasma Sci 44:2699–2707

    Article  CAS  Google Scholar 

  41. Von Woedtke T, Reuter S, Masur K, Weltmann KD (2013) Phys Rep 530:291–320

    Article  CAS  Google Scholar 

  42. Scholtz V, Pazlarová J, Soušková H, Khun J, Julák J (2015) Biotechnol Adv 33:1108–1119

    Article  CAS  PubMed  Google Scholar 

  43. O’Connor N, Cahill O, Daniels S, Galvin S, Humphreys H (2014) J Hosp Infect 88:59–65

    Article  PubMed  Google Scholar 

  44. Matthes R et al (2013) PLoS ONE 8:e70462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Fricke K et al (2012) PLoS ONE 7:e42539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Alkawareek MY, Algwari QT, Gorman SP, Graham WG, O’Connell D, Gilmore BF (2012) FEMS Immunol Med Microbiol 65:381–384

    Article  CAS  PubMed  Google Scholar 

  47. Ziuzina D, Boehm D, Patil S, Cullen PJ, Bourke P (2015) PLoS ONE 10:e0138209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Khan MSI, Lee E-J, Kim Y-J (2016) Sci Rep 6:37072. https://doi.org/10.1038/srep37072

    Article  CAS  PubMed Central  Google Scholar 

  49. Han L, Patil S, Keener K, Cullen PJ, Bourke P (2014) J Appl Microbiol 116:784–794

    Article  CAS  PubMed  Google Scholar 

  50. Laroussi M, Mendis DA, Rosenberg M (2003) New J Phys 5:41.1–41.10

    Article  Google Scholar 

  51. Jamal M, Ahmad W, Andleeb S, Jalil F, Imran M, Nawaz MA, Hussain T, Ali M, Rafiq M, Kamil MA (2018) J Chin Med Assoc 81:7–11

    Article  PubMed  Google Scholar 

  52. Giaouris E, Heir E, Desvaux M, Hébraud M, Møretrø T, Langsrud S, Doulgeraki A, Nychas G-J, Kacániová M, Czaczyk K, Ölmez H, Simões M (2015) Front Microbiol 6:841

    Article  PubMed  PubMed Central  Google Scholar 

  53. Irie Y, Preston A, Yuk MH (2006) J Bacteriol 188:6680–6687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Czaczyk K, Myszka K (2007) Pol J Environ Stud 16:799–806

    CAS  Google Scholar 

  55. Locke BR, Thagard SM (2012) Plasma Chem Plasma Proc 32:875–917

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financed by a statutory activity subsidy from the Polish Ministry of Science and Higher Education (PMSHE) for the Department of Electrical Engineering Fundamentals and the Faculty of Chemistry of Wroclaw University of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomasz Czapka.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Czapka, T., Maliszewska, I. & Olesiak-Bańska, J. Influence of Atmospheric Pressure Non-thermal Plasma on Inactivation of Biofilm Cells. Plasma Chem Plasma Process 38, 1181–1197 (2018). https://doi.org/10.1007/s11090-018-9925-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-018-9925-z

Keywords

Navigation