Skip to main content
Log in

Maximal entanglement from quantum random walks

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The conditions under which entanglement becomes maximal are sought in the general one-dimensional quantum random walk with two walkers. Moreover, a one-dimensional shift operator for the two walkers is introduced and its performance in generating entanglement is analyzed as a function of several free parameters, some of them coming from the shift operator itself and some others from the coin operator. To simplify the investigation an averaged entanglement is defined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aharonov Y., Davidovich L., Zagury N.: Quantum random walks. Phys. Rev. A 48, 1687 (1993)

    Article  ADS  Google Scholar 

  2. Kempe J.: Quantum random walks: an introductory overview. Contemp. Phys. 44, 307 (2003)

    Article  ADS  Google Scholar 

  3. Carneiro I., Loo M., Xu X., Girerd M., Kendon V., Knight P.L.: Entanglement in coined quantum walks on regular graphs. New J. Phys. 7, 156 (2005)

    Article  ADS  Google Scholar 

  4. Kendon V.: Decoherence in quantum walks: a review. Math. Struct. Comp. Sci. 17, 1169 (2006)

    MathSciNet  Google Scholar 

  5. Konno N.: Quantum random walks in one dimension. Quantum Inf. Process. 1, 345 (2002)

    Article  MathSciNet  Google Scholar 

  6. Abal G., Siri R., Romanelli A., Donangelo R.: Quantum walk on the line: entanglement and nonlocal initial conditions. Phys. Rev. A 73, 042302 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  7. Feynman R.P., Hibbs A.R.: Quantum Mechanics and Path Integrals. McGraw-Hill, New York (1965)

    MATH  Google Scholar 

  8. Meyer D.: From quantum cellular automata to quantum lattice gases. J. Stat. Phys. 85, 551 (1996a)

    Article  MATH  ADS  Google Scholar 

  9. Meyer D.: On the absence of homogeneous scalar unitary cellular automata. Phys. Lett. A 223, 337 (1996b)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  10. Grimmett G., Janson S., Scudo P.F.: Weak limits for quantum random walks. Phys. Rev. E 69, 026119 (2004)

    Article  ADS  Google Scholar 

  11. Maloyer O., Kendon V.: Decoherence versus entanglement in coined quantum walks. New J. Phys. 9, 87 (2007)

    Article  ADS  Google Scholar 

  12. Liu C., Petulante N.: One-dimensional quantum random walks with two entangled coins. Phys. Rev. A 79, 032312 (2009)

    Article  ADS  Google Scholar 

  13. Štefaňák M., Kiss T., Jex I., Mohring B.: The meeting problem in the quantum walk. J. Phys. A Math. Gen. 39, 14965 (2006)

    Article  MATH  ADS  Google Scholar 

  14. Romanelli A.: Distribution of chirality in the quantum walk: Markov process and entanglement. Phys. Rev. A 81, 062349 (2010)

    Article  ADS  Google Scholar 

  15. Mohseni M., Rebentrost P., Lloyd S., Aspuru-Guzik A.: Environment-assisted quantum walks in photosynthetic energy transfer. J. Chem. Phys. 129, 174106 (2008)

    Article  ADS  Google Scholar 

  16. Oka T., Konno N., Arita R., Aoki H.: Breakdown of an electric-field driven system: a mapping to a quantum walk. Phys. Rev. Lett. 94, 100602 (2005)

    Article  ADS  Google Scholar 

  17. Anders J., Oi D.K.L., Kashefi E., Brownel D.E., Andersson E.: Ancilla-driven universal quantum computation. Phys. Rev. A 82, 020301 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  18. Du J., Li H., Xu X., Shi M., Wu J., Zhou X., Han R.: Experimental implementation of the quantum random-walk algorithm. Phys. Rev. A 67, 042316 (2003)

    Article  ADS  Google Scholar 

  19. Ryan C.A., Laforest M., Boileau J.C., Laflamme R.: Experimental implementation of a discrete-time quantum random walk on an NMR quantum–information processor. Phys. Rev. A 72, 062317 (2005)

    Article  ADS  Google Scholar 

  20. Perets H.B., Lahini Y., Pozzi F., Sorel M., Morandotti R., Siberberg Y.: Realization of quantum walks with negligible decoherence in waveguide lattices. Phys. Rev. Lett. 100, 170506 (2008)

    Article  ADS  Google Scholar 

  21. Venegas-Andraca, S.E., Bose, S.: Quantum walk-based generation of entanglement between two walkers. arXiv:0901.3946

  22. Goyal S.K., Chandrashekar C.M.: Spatial entanglement using a quantum walk on a many-body system. J. Phys. A Math. Theor. 43, 235303 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  23. Farhi E., Gutmann S.: Quantum computation and decision trees. Phys. Rev. A 58, 915 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  24. Nayak, A., Vishwanath, A.: Quantum walk on the line. quant-ph/0010117

  25. Ambainis, A., Bach, E., Nayak, A., Vishwanath, A., Watrous, J.: One-dimensional quantum walks. In: Proceedings of 33 Annual ACM Symposium on Theory of Computing, pp. 37–49 (2001)

  26. Watrous J.: Quantum simulations of classical random walks and undirected graph connectivity. J. Comput. Syst. Sci. 62, 376 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  27. Nielsen M.A., Chuang I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  28. Mayer, K., Tichy, M.C., Mintert, F., Konrad, T., Buchleitner, A.: Counting statistics of many-particle quantum walks. arXiv:1009.5241

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Allés.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Allés, B., Gündüç, S. & Gündüç, Y. Maximal entanglement from quantum random walks. Quantum Inf Process 11, 211–227 (2012). https://doi.org/10.1007/s11128-011-0240-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-011-0240-3

Keywords

Navigation