Skip to main content
Log in

Facile new industrial process for synthesis of teneligliptin through new intermediates and its optimization with control of impurities

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

The present study is related to a commercially practicable new synthetic process for production of teneligliptin hydrobromide hydrate (1), a dipeptidyl peptidase-4 (DPP-4) inhibitor. Key strategies in the new process include preparation and isolation of new intermediates such as a better reactive nosyl derivative (3c) of l-proline methyl ester (2), its stereoselective substituted intermediate (5) with 1-(3-methyl-1-phenyl-1H-pyrazol-5-yl)piperazine (4) through SN2-type nucleophilic substitution, and isolation of carboxylic acid derivative 6 by deesterification of intermediate 5. The reaction conditions for preparation of new intermediates, and the additionally used coupling reaction for amidation and deprotection of N-Boc were optimized with control of impurities to improve the quality of drug molecule 1 with good yield. The developed synthetic strategy offers significant advantages over existing synthetic approaches, avoiding use of expensive reagents, long time consumption, and laborious procedures involving isolation of intermediates. The developed process for drug molecule 1, achieving overall yield of 37–39% over six sequential chemical transformations, enables rapid delivery of multi-kilogram quantities of the desired active pharmaceutical ingredient (API), meeting stringent purity requirements.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. M. Kishimoto, Diabetes Metab. Syndr. Obes. 6, 187–195 (2013)

    Article  CAS  Google Scholar 

  2. J.A. Lovshin, D.J. Drucker, Nat. Rev. Endocrinol. 5(5), 262–269 (2009)

    Article  CAS  Google Scholar 

  3. J.J. Neumiller, Clin. Ther. 33(5), 528–576 (2011)

    Article  CAS  Google Scholar 

  4. J. Bronson, A. Black, T.G. Murali Dhar, B.A. Ellsworth, J.A. Merritt, Annu. Rep. Med. Chem. 48, 471–546 (2013)

    Article  CAS  Google Scholar 

  5. M. Goda, T. Kadowaki, Drugs Today (Barc) 49(10), 615–629 (2013)

    CAS  Google Scholar 

  6. S. Tanaka, K. Suzuki, C. Aoki, M. Niitani, K. Kato, T. Tomotsune, Y. Aso, Diabetes Technol. Ther. 16(12), 840–845 (2014)

    Article  CAS  Google Scholar 

  7. H. Kitajima, H. Sakashita, F. Akahoshi, Y. Hayashi, US Patent 7,074,794 B2 (2006)

  8. ICH Q3C(R5) Impurities: guidelines for residual solvents, international conference on harmonization of technical requirements for registration of pharmaceuticals for human use (ICH): Geneva, Switzerland (2011)

  9. T. Yoshida, H. Sakashita, N. Ueda, S. Kirihara, S. Uemori, R. Tsutsumiuchi, F. Akahoshi, US Patent 2011/0282058A1 (2011)

  10. F. Akahoshi, K. Shinji, WO Patent 2012165547 A1 (2012)

  11. M.K. Suresh, P.K. Bipin, V.K. Ramachandran, P.P. Jayant, Y. Venkataramana Reddy, N.B. Shailendra, P.C. Uddhav, D.P. Ulhas, B.B. Shekhar, WO Patent 2014041560 A2 (2014)

  12. T. Wang, J.F. Kadow, Z. Zhang, Z. Yin, N.A. Meanwell, A. Regueiro-Ren, J. Swidorski, Y. Han, D.J. Carini, L.G. Hamann, US Patent 2008/0139572 A1 (2008)

  13. S. Warren, P. Wyatt, Organic Synthesis: The Disconnection Approach (Wiley, New York, 2008)

    Google Scholar 

  14. J. Seo, P. Martasek, L.J. Roman, R.B. Silverman, Bioorg. Med. Chem. 15(5), 1928–1938 (2007)

    Article  CAS  Google Scholar 

  15. F. Diaba, E. Ricou, J. Bonjoch, Tetrahedron Asymmetry 17(9), 1437–1443 (2006)

    Article  CAS  Google Scholar 

  16. T. Hwang, H. Kim, K.I. Lee, Bull. Korean Chem. Soc. 8, 2128 (2015)

    Article  Google Scholar 

  17. A. Fisher, A. Mann, V. Verma, N. Thomas, R.K. Mishra, R.L. Johnson, J. Med. Chem. 49(1), 307–317 (2006)

    Article  CAS  Google Scholar 

  18. H. Marusawa, H. Setoi, A. Sawada, A. Kuroda, J. Seki, Y. Motoyama, H. Tanaka, Bioorg. Med. Chem. 10(5), 1399–1415 (2002)

    Article  CAS  Google Scholar 

  19. K.I. Tanaka, H. Sawanishi, Tetrahedron Asymmetry 9(1), 71–77 (1998)

    Article  CAS  Google Scholar 

  20. C. Lerner, R. Siegrist, E. Schweizer, F. Diederich, V. Gramlich, R. Jakob-Roetne, G. Zurcher, E. Borroni, Helv. Chim. Acta 86(4), 1045–1061 (2003)

    Article  CAS  Google Scholar 

  21. I.F. Pickersgill, H. Rapoport, J. Org. Chem. 65(3), 4048–4057 (2000)

    Article  CAS  Google Scholar 

  22. D. Lafrance, S. Caron, Org. Process Res. Dev. 16(3), 409–414 (2012)

    Article  CAS  Google Scholar 

  23. C.J. Barnett, B. Huff, M.E. Kobierski, M. Letourneau, T.M. Wilson, J. Org. Chem. 69(22), 7653–7660 (2004)

    Article  CAS  Google Scholar 

  24. S.K. Thompson, S.M. Halbert, M.J. Bossard, T.A. Tomaszek, M.A. Levy, B. Zhao, W.W. Smith, S.S. Abdel-Meguid, C.A. Janson, K.J. Dalessio, M.S. Mcqueney, B.Y. Amegadzie, C.R. Hanning, R.L. Desjarlais, J. Briand, S.K. Sarkar, M.J. Huddleston, C.F. Ijames, S.A. Carr, K.T. Garnes, A. Shu, J.R. Heys, J. Bradbeer, D. Zembryki, L. Rykaczewski, I.E. James, M.W. Lark, F.H. Drake, M. Gowen, J.H. Gleason, D.F. Veber, Proc. Natl. Acad. Sci. USA 94(26), 14249–14254 (1997)

    Article  CAS  Google Scholar 

  25. I.G. Boutselis, X. Yu, Z.Y. Zhang, R.F. Borch, J. Med. Chem. 50(4), 856–864 (2007)

    Article  CAS  Google Scholar 

  26. T. Yoshida, F. Akahoshi, H. Sakashita, H. Kitajima, M. Nakamura, S. Sonda, M. Takeuchi, Y. Tanaka, T. Ueda, S. Sekiguchi, T. Ishige, K. Shima, M. Nabeno, Y. Abe, J. Anabuki, A. Soeiima, K. Yoshida, Y. Takashina, S. Ishii, S. Kiuchi, S. Fukuda, R. Tsutsumiuchi, K. Kosaka, T. Murozono, Y. Nakamaru, H. Utsumi, N. Masutomi, H. Kishida, I. Miyaguchi, Y. Hayashi, Bioorg. Med. Chem. 20(19), 5705–5719 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors greatly appreciate financial support of this work from Micro Labs Ltd., API Division Centre, ML-27, Bangalore. We thank our group colleagues for their appreciated contributions. We also wish to thank Ajay Thakur, Dr. Anamica, Sathish, Rajiv, Naresh, and Ridhima Kochar for their valuable analytical support and cooperation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shailendra Kumar Dubey.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 3126 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, N., Devineni, S.R., Aggile, K. et al. Facile new industrial process for synthesis of teneligliptin through new intermediates and its optimization with control of impurities. Res Chem Intermed 44, 567–584 (2018). https://doi.org/10.1007/s11164-017-3120-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-017-3120-3

Keywords

Navigation