Skip to main content
Log in

Elevated metallothionein expression in long-lived species mediates the influence of cadmium accumulation on aging

  • Original Article
  • Published:
GeroScience Aims and scope Submit manuscript

Abstract

Cadmium (Cd) accumulates with aging and is elevated in long-lived species. Metallothioneins (MTs), small cysteine-rich proteins involved in metal homeostasis and Cd detoxification, are known to be related to longevity. However, the relationship between Cd accumulation, the role of MTs, and aging is currently unclear. Specifically, we do not know if long-lived species evolved an efficient metal stress response by upregulating their MT levels to reduce the toxic effects of environmental pollutants, such as Cd, that accumulate over their longer life span. It is also unknown if the number of MT genes, their expression, or both protect the organisms from potentially damaging effects during aging. To address these questions, we reanalyzed several cross-species studies and obtained data on MT expression and Cd accumulation in long-lived mouse models. We confirmed a relationship between species maximum life span in captive mammals and their Cd content in liver and kidney. We found that although the number of MT genes does not affect longevity, gene expression and protein amount of specific MT paralogs are strongly related to life span in mammals. MT expression rather than gene number may influence the high Cd levels and longevity of some species. In support of this, we found that overexpression of MT-1 accelerated Cd accumulation in mice and that tissue Cd was higher in long-lived mouse strains with high MT expression. We conclude that long-lived species have evolved a more efficient stress response by upregulating the expression of MT genes in presence of Cd, which contributes to elevated tissue Cd levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Åkesson A, Barregard L, Bergdahl IA, et al Non-renal effects and the risk assessment of environmental cadmium exposure 2014.

  2. Andrews GK. Regulation of metallothionein gene expression by oxidative stress and metal ions. Biochem Pharmacol. 2000;59:95–104.

    Article  CAS  Google Scholar 

  3. Arredondo M, González M, Latorre M Copper. In: Malavolta M, Mocchegiani E (eds) Trace elements and minerals in health and longevity. 2018. pp 35–62.

  4. Barrett T, Wilhite SE, Ledoux P, et al. NCBI GEO: archive for functional genomics data sets—update. Nucleic Acids Res. 2013. https://doi.org/10.1093/nar/gks1193.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bartke A Somatic growth, aging, and longevity. npj Aging Mech. Dis. 2017.

  6. Beattie JH, Malavolta M, Korichneva I Zinc. 2018. pp 99–131.

  7. Bininda-Emonds ORP, Cardillo M, Jones KE, et al. The delayed rise of present-day mammals. Nature. 2007. https://doi.org/10.1038/nature05634.

    Article  PubMed  Google Scholar 

  8. Brown-Borg HM, Borg KE, Meliska CJ, Bartke A. Dwarf mice and the ageing process. Nature. 1996;384:33–33. https://doi.org/10.1038/384033a0.

    Article  CAS  PubMed  Google Scholar 

  9. Buchwalter DB, Cain DJ, Martin CA, et al. Aquatic insect ecophysiological traits reveal phylogenetically based differences in dissolved cadmium susceptibility. Proc Natl Acad Sci U S A. 2008;105:8321–6. https://doi.org/10.1073/pnas.0801686105.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Carruthers M, Yurchenko AA, Augley JJ, et al. De novo transcriptome assembly, annotation and comparison of four ecological and evolutionary model salmonid fish species. BMC Genomics. 2018. https://doi.org/10.1186/s12864-017-4379-x.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Chiari Y, Glaberman S, Serén N, et al. Phylogenetic signal in amphibian sensitivity to copper sulfate relative to experimental temperature. Ecol Appl. 2015. https://doi.org/10.1890/14-0439.1.

    Article  PubMed  Google Scholar 

  12. Chiaverini N, De Ley M Protective effect of metallothionein on oxidative stress-induced DNA damage. Free Radic. Res. 2010.

  13. Cipriano C, Malavolta M, Costarelli L, et al. Polymorphisms in MT1a gene coding region are associated with longevity in Italian Central female population. Biogerontology. 2006;7:357–65. https://doi.org/10.1007/s10522-006-9050-x.

    Article  CAS  PubMed  Google Scholar 

  14. Cousins RJ. Absorption, transport, and hepatic metabolism of copper and zinc: special reference to metallothionein and ceruloplasmin. 1985.

  15. de Magalhães JP, Costa J, Church GM, et al. An analysis of the relationship between metabolism, developmental schedules, and longevity using phylogenetic independent contrasts. J Gerontol A Biol Sci Med Sci. 2007;62:149–60. https://doi.org/10.1093/gerona/62.2.149.

    Article  PubMed  Google Scholar 

  16. Demirovic D, Rattan SIS. Establishing cellular stress response profiles as biomarkers of homeodynamics, health and hormesis. Exp Gerontol. 2013. https://doi.org/10.1016/j.exger.2012.02.005.

    Article  PubMed  Google Scholar 

  17. Dobin A, Davis CA, Schlesinger F, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013. https://doi.org/10.1093/bioinformatics/bts635.

    Article  PubMed  Google Scholar 

  18. Dostál L, Kohler WM, Penner-Hahn JE, et al. Fibroblasts from long-lived rodent species exclude cadmium. J Gerontol A Biol Sci Med Sci. 2015. https://doi.org/10.1093/gerona/glu001.

    Article  PubMed  Google Scholar 

  19. Durinck S, Spellman PT, Birney E, Huber W. Mapping identifiers for the integration of genomic datasets with the R/Bioconductor package biomaRt. Nat Protoc. 2009. https://doi.org/10.1038/nprot.2009.97.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Dziegiel P. Metallothioneins in normal and cancer cells, advances in anatomy, embryology and cell biology. J Neurol Neurosurg Psychiatry. 2016.

  21. Eisler R. Compendium of trace metals and marine biota. 2010

  22. Fok WC, Chen Y, Bokov A, et al. Mice fed rapamycin have an increase in lifespan associated with major changes in the liver transcriptome. PLoS ONE. 2014. https://doi.org/10.1371/journal.pone.0083988.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Frank A. In search of biomonitors for cadmium: cadmium content of wild Swedish fauna during 1973–1976. Sci Total Environ. 1986. https://doi.org/10.1016/0048-9697(86)90009-4.

    Article  PubMed  Google Scholar 

  24. Fushan AA, Turanov AA, Lee SG, et al. Gene expression defines natural changes in mammalian lifespan. Aging Cell. 2015. https://doi.org/10.1111/acel.12283.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Giacconi R, Costarelli L, Piacenza F, et al. Zinc-induced metallothionein in centenarian offspring from a large European population: the MARK-AGE project. J Gerontol A Biol Sci Med Sci. 2018 73. https://doi.org/10.1093/gerona/glx192

  26. Grubić Kezele T Iron. 2018. pp 1–34.

  27. Gu J, Cheng Y, Wu H, et al. Metallothionein is downstream of Nrf2 and partially mediates sulforaphane prevention of diabetic cardiomyopathy. Diabetes. 2017. https://doi.org/10.2337/db15-1274.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Gundacker C, Pietschnig B, Wittmann KJ, et al. Smoking, cereal consumption, and supplementation affect cadmium content in breast milk. J Expo Sci Environ Epidemiol. 2007;17:39–46. https://doi.org/10.1038/sj.jes.7500518.

    Article  CAS  PubMed  Google Scholar 

  29. Hall JA, McElwee MK, Freedman JH. Identification of ATF-7 and the insulin signaling pathway in the regulation of metallothionein in C. elegans suggests roles in aging and reactive oxygen species. PLoS One. 2017. https://doi.org/10.1371/journal.pone.0177432

  30. Harper JM, Salmon AB, Leiser SF, et al. Skin-derived fibroblasts from long-lived species are resistant to some, but not all, lethal stresses and to the mitochondrial inhibitor rotenone. Aging Cell. 2007. https://doi.org/10.1111/j.1474-9726.2006.00255.x.

    Article  PubMed  Google Scholar 

  31. Harper JM, Wang M, Galecki AT, et al. Fibroblasts from long-lived bird species are resistant to multiple forms of stress. J Exp Biol. 2011. https://doi.org/10.1242/jeb.054643.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Harrison DE, Strong R, Sharp ZD, et al. Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature. 2009;460:392–5. https://doi.org/10.1038/nature08221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Henry RB, Liu J, Choudhuri S, Klaassen CD. Species variation in hepatic metallothionein. Toxicol Lett. 1994;74:23–33. https://doi.org/10.1016/0378-4274(94)90071-X.

    Article  CAS  PubMed  Google Scholar 

  34. Hidalgo J, Chung R, Penkowa M, Vašák M. 10. Structure and function of vertebrate metallothioneins. 2009:pp 279–317.

  35. Hunt SE, McLaren W, Gil L, et al. Ensembl variation resources. Database (Oxford). 2018. https://doi.org/10.1093/database/bay119.

    Article  PubMed Central  Google Scholar 

  36. Hylton A, Chiari Y, Capellini I, et al. Mixed phylogenetic signal in fish toxicity data across chemical classes. Ecol Appl. 2018. https://doi.org/10.1002/eap.1698.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Iszard MB, Liu J, Liu Y, et al. Characterization of metallothionein-I-transgenic mice. Toxicol Appl Pharmacol. 1995;133:305–12.

    Article  CAS  Google Scholar 

  38. Järup L, Åkesson A Current status of cadmium as an environmental health problem. Toxicol Appl Pharmacol. 2009.

  39. Jeffery EH, Noseworthy R, Cherian MG. Age dependent changes in metallothionein and accumulation of cadmium in horses. Comp Biochem Physiol Part C, Comp. 1989. https://doi.org/10.1016/0742-8413(89)90242-9.

    Article  Google Scholar 

  40. Jetz W, Thomas GH, Joy JB, et al. The global diversity of birds in space and time. Nature. 2012. https://doi.org/10.1038/nature11631.

    Article  PubMed  Google Scholar 

  41. Kadota Y, Aki Y, Toriuchi Y, et al. Deficiency of metallothionein-1 and -2 genes shortens the lifespan of the 129/Sv mouse strain. Exp Gerontol. 2015;66:21–4. https://doi.org/10.1016/j.exger.2015.04.007.

    Article  CAS  PubMed  Google Scholar 

  42. Klang IM, Schilling B, Sorensen DJ, et al. Iron promotes protein insolubility and aging in C. elegans. Aging (Albany NY) 2014: https://doi.org/10.18632/aging.100689

  43. Koizumi N, Inoue Y, Ninomiya R, et al. Relationship of cadmium accumulation to zinc or copper concentration in horse liver and kidney. Environ Res. 1989. https://doi.org/10.1016/S0013-9351(89)80025-8.

    Article  PubMed  Google Scholar 

  44. Koizumi N, Murata K, Hayashi C, et al. High cadmium accumulation among humans and primates: comparison across various mammalian species—a study from Japan. Biol Trace Elem Res. 2008. https://doi.org/10.1007/s12011-007-8048-9.

    Article  PubMed  Google Scholar 

  45. Kolde R. pheatmap : pretty heatmaps. R Packag version. 2015;1:8.

    Google Scholar 

  46. Krizkova S, Kepinska M, Emri G, et al. Microarray analysis of metallothioneins in human diseases—a review. J. Pharm Biomed Anal. 2016.

  47. Larsson SC, Wolk A Urinary cadmium and mortality from all causes, cancer and cardiovascular disease in the general population: systematic review and meta-analysis of cohort studies. Int. J. Epidemiol. 2016.

  48. Li X, Bartke A, Berryman DE, et al. Direct and indirect effects of growth hormone receptor ablation on liver expression of xenobiotic metabolizing genes. Am J Physiol - Endocrinol Metab. 2013. https://doi.org/10.1152/ajpendo.00304.2013.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Liu J, Klaassen CD. Absorption and distribution of cadmium in metallothionein-I transgenic mice. Fundam Appl Toxicol. 1996;29:294–300.

    Article  CAS  Google Scholar 

  50. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014. https://doi.org/10.1186/s13059-014-0550-8.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Ma S, Lee S-G, Kim EB, et al. Organization of the mammalian ionome according to organ origin, lineage specialization, and longevity. Cell Rep. 2015;13:1319–26. https://doi.org/10.1016/j.celrep.2015.10.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Malavolta M, Basso A, Piacenza F, et al. Survival study of metallothionein-1 transgenic mice and respective controls (C57BL/6J): influence of a zinc-enriched environment. Rejuvenation Res. 2012;15:140–3. https://doi.org/10.1089/rej.2011.1261.

    Article  CAS  PubMed  Google Scholar 

  53. Malavolta M, Orlando F, Piacenza F, et al. Metallothioneins, longevity and cancer: comment on “deficiency of metallothionein-1 and -2 genes shortens the lifespan of the 129/Sv mouse strain.” Exp Gerontol. 2016;73:28–30. https://doi.org/10.1016/j.exger.2015.11.014.

    Article  CAS  PubMed  Google Scholar 

  54. Maret W. The redox biology of redox-inert zinc ions. Free Radic Biol Med. 2019.

  55. Maret W, Krȩzel A, Krezel A. Cellular zinc and redox buffering capacity of metallothionein/thionein in health and disease. In: Molecular medicine (Cambridge, Mass.): 2007. pp 371–5

  56. McKinney GJ, Waples RK, Seeb LW, Seeb JE. Paralogs are revealed by proportion of heterozygotes and deviations in read ratios in genotyping-by-sequencing data from natural populations. Mol Ecol Resour. 2017. https://doi.org/10.1111/1755-0998.12613.

    Article  PubMed  Google Scholar 

  57. Miura N, Koizumi S. Heavy metal responses of the human metallothionein isoform genes. Yakugaku Zasshi. 2007.

  58. Ninomiya R, Koizumi N, Murata K. Concentrations of cadmium, zinc, copper, iron, and metallothionein in liver and kidney of nonhuman primates. Biol Trace Elem Res. 2002. https://doi.org/10.1385/BTER:87:1-3:095.

    Article  PubMed  Google Scholar 

  59. Ninomiya R, Koizumi N, Murata K. Metal concentrations in the liver and kidney of aquatic mammals and penguins. Biol Trace Elem Res. 2004. https://doi.org/10.1385/BTER:97:2:135.

    Article  PubMed  Google Scholar 

  60. Orme D, Freckleton R, Thomas G, et al (2014) Caper: comparative analyses of phylogenetics and evolution in R. R Packag. version 0.5.2/ r121

  61. Øverjordet IB, Gabrielsen GW, Berg T, et al. Effect of diet, location and sampling year on bioaccumulation of mercury, selenium and cadmium in pelagic feeding seabirds in Svalbard. Chemosphere. 2015. https://doi.org/10.1016/j.chemosphere.2014.10.060.

    Article  PubMed  Google Scholar 

  62. Pabis K, Gundacker C, Giacconi R, et al. Zinc supplementation can reduce accumulation of cadmium in aged metallothionein transgenic mice. Chemosphere. 2018. https://doi.org/10.1016/j.chemosphere.2018.08.017.

    Article  PubMed  Google Scholar 

  63. Palumaa P, Tammiste I, Kruusel K, et al. Metal binding of metallothionein-3 versus metallothionein-2: lower affinity and higher plasticity. Biochim Biophys Acta - Proteins Proteomics. 2005. https://doi.org/10.1016/j.bbapap.2004.11.007.

    Article  Google Scholar 

  64. Pastorelli AA, Campanella L, Coppa A, Stacchini P. Exposure to cadmium and lead in an agropastoral iron age population. Int J Osteoarchaeol. 2016. https://doi.org/10.1002/oa.2403.

    Article  Google Scholar 

  65. Peng X, Thierry-Mieg J, Thierry-Mieg D, et al. Tissue-specific transcriptome sequencing analysis expands the non-human primate reference transcriptome resource (NHPRTR). Nucleic Acids Res. 2015. https://doi.org/10.1093/nar/gku1110.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Pugh TD, Oberley TD, Weindruch R. Dietary intervention at middle age: caloric restriction but not dehydroepiandrosterone sulfate increases lifespan and lifetime cancer incidence in mice. Cancer Res. 1999.

  67. Sabolić I, Breljak D, Škarica M, Herak-Kramberger CM. Role of metallothionein in cadmium traffic and toxicity in kidneys and other mammalian organs. BioMetals. 2010.

  68. Sahm A, Bens M, Szafranski K, et al. Long-lived rodents reveal signatures of positive selection in genes associated with lifespan. PLoS Genet. 2018. https://doi.org/10.1371/journal.pgen.1007272.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Sato M, Bremner I. Oxygen free radicals and metallothionein. Free Radic Biol Med. 1993. https://doi.org/10.1016/0891-5849(93)90029-T.

    Article  PubMed  Google Scholar 

  70. Scheuhammer AM, Cherian MG. Quantification of metallothioneins by a silver-saturation method. Toxicol Appl Pharmacol. 1986. https://doi.org/10.1016/0041-008X(86)90277-2.

    Article  PubMed  Google Scholar 

  71. Schmidt K, Steiner K, Petrov B, et al. Short-lived mammals (shrew, mouse) have a less robust metal-responsive transcription factor than humans and bats. Biometals. 2016. https://doi.org/10.1007/s10534-016-9926-4.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Serén N, Glaberman S, Carretero MA, Chiari Y. Molecular evolution and functional divergence of the metallothionein gene family in vertebrates. J Mol Evol. 2014. https://doi.org/10.1007/s00239-014-9612-5.

    Article  PubMed  Google Scholar 

  73. Speakman JR. Correlations between physiology and lifespan—two widely ignored problems with comparative studies. Aging Cell. 2005.

  74. Stiedl P, Mcmahon R, Blaas L, et al. Growth hormone resistance exacerbates cholestasis-induced murine liver fibrosis. Hepatology. 2015. https://doi.org/10.1002/hep.27408.

    Article  PubMed  Google Scholar 

  75. Swindell WR Metallothionein and the biology of aging. Ageing Res Rev. 2011.

  76. Swindell WR, Johnston A, Sun L, et al. Meta-profiles of gene expression during aging: limited similarities between mouse and human and an unexpectedly decreased inflammatory signature. PLoS ONE. 2012. https://doi.org/10.1371/journal.pone.0033204.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Swindell WR, Masternak MM, Bartke A. In vivo analysis of gene expression in long-lived mice lacking the pregnancy-associated plasma protein A (PappA) gene. Exp Gerontol. 2010;45:366–74. https://doi.org/10.1016/j.exger.2010.02.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Tacutu R, Craig T, Budovsky A, et al. Human ageing genomic resources: integrated databases and tools for the biology and genetics of ageing. Nucleic Acids Res. 2012;41:D1027–33. https://doi.org/10.1093/nar/gks1155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Teranishi A, Ninomiya R, Koizumi N. Relationship of metallothionein to cadmium and to zinc in human liver and kidney. In: Metallothionein IV. Birkhäuser Basel, Basel: 1999 pp 485–488

  80. The UniProt Consortium. UniProt: a worldwide hub of protein knowledge The UniProt Consortium. Nucleic Acids Res. 2019.

  81. Valencak TG, Ruf T. Phospholipid composition and longevity: lessons from Ames dwarf mice. Age (Omaha). 2013. https://doi.org/10.1007/s11357-013-9533-z.

    Article  Google Scholar 

  82. Vijay N, Poelstra JW, Künstner A, Wolf, JBW. Challenges and strategies in transcriptome assembly and differential gene expression quantification. A comprehensive in silico assessment of RNA-seq experiments. In: Molecular Ecology. 2013.

  83. Wills NK, Ramanujam VMS, Chang J, et al. Cadmium accumulation in the human retina: effects of age, gender, and cellular toxicity. Exp Eye Res. 2008;86:41–51. https://doi.org/10.1016/j.exer.2007.09.005.

    Article  CAS  PubMed  Google Scholar 

  84. Yang X, Doser TA, Fang CX, et al. Metallothionein prolongs survival and antagonizes senescence-associated cardiomyocyte diastolic dysfunction: role of oxidative stress. FASEB J. 2006;20:1024–6. https://doi.org/10.1096/fj.05-5288fje.

    Article  CAS  PubMed  Google Scholar 

  85. Yang X, Han Y, Mu Y, et al. Multigenerational effects of cadmium on the lifespan and fertility of Drosophila melanogaster. Chemosphere. 2020. https://doi.org/10.1016/j.chemosphere.2019.125533.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Yu C, Li Y, Holmes A, et al. RNA sequencing reveals differential expression of mitochondrial and oxidation reduction genes in the long-lived naked mole-rat when compared to mice. PLoS ONE. 2011. https://doi.org/10.1371/journal.pone.0026729.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Zhang D, Jin T, Xu Y, qiao, , et al. Diurnal-and sex-related difference of metallothionein expression in mice. J Circadian Rhythms. 2012. https://doi.org/10.1186/1740-3391-10-5.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Zota AR, Needham BL, Blackburn EH, et al. Associations of cadmium and lead exposure with leukocyte telomere length: findings from National Health And Nutrition Examination Survey, 1999–2002. Am J Epidemiol. 2015. https://doi.org/10.1093/aje/kwu293.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We wish to thank Emilio Casanova, Richard Miller, and Thomas Weichhart for providing mouse tissues. Old mice were provided by Gerald de Haan and Ronald van Os through the Mouse Clinic for Cancer and Aging (MCCA), funded by a Large Infrastructure grant from the Netherlands Organization for Scientific Research (NWO). Finally, we are thankful to Isabella Capellini for discussion on the results of the phylogenetic comparative analyses and to Vincent Lynch for general discussion about metallothioneins and aging. We are thankful to Richard Miller for useful comments on this article. YC is grateful to the National Science Foundation (NSF) for supporting work related to this project.

Funding

This study was supported by Ricerca Corrente funding from Italian Ministry of Health to MP, MM, and RG as well as from Austrian Science Fund FWF (Grant: P22323-B17 and V 197-B17) to TV.

Author information

Authors and Affiliations

Authors

Contributions

Conception of the work: M.M., K.N., and M.P.

Data collection: K.P., E.S., R.G., H.B., Y.C.

Data analysis and interpretation: Y.C., K.P., C.G., E.S., M.M., C.S., P.G.

Drafting the article: Y.C., K.P., M.M.

Critical revision: Y.C., K.P., M.M., C.G., T.V., H.B.

Corresponding author

Correspondence to Marco Malavolta.

Ethics declarations

Ethics approval

All samples used in this study consisted of leftover samples stored in mouse tissues biobanks. These samples originated from different studies which were originally approved by the respective local ethical committees.

Data availability statement

The data that support the findings of this study are available in the Supplementary data 1 of this article.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Kamil Pabis and Ylenia Chiari shared first authorship.

Supplementary information

ESM 1

(XLSX 72 kb)

ESM 2

(DOCX 620 kb)

ESM 3

(DOCX 16 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pabis, K., Chiari, Y., Sala, C. et al. Elevated metallothionein expression in long-lived species mediates the influence of cadmium accumulation on aging. GeroScience 43, 1975–1993 (2021). https://doi.org/10.1007/s11357-021-00393-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-021-00393-3

Keywords

Navigation