Skip to main content

Advertisement

Log in

Screening test for aqueous solvents used in CO2 capture: K2CO3 used with twelve different rate promoters

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

K2CO3 solution is widely used in the CO2-capture industry. In particular, it has advantages for treating CO2 in flue gas under high-temperature and high-pressure conditions. However, it has a lower CO2-loading capacity and slower absorption kinetics than those of amines, which are its major disadvantages. Thus, in this study, we investigated ten loading-rate promoters, five primary amines and five secondary amines, to develop higher CO2-loading capacity and faster absorption kinetics. The screening tests of the absorption and desorption processes were conducted at 70 °C and 90 °C, respectively. Based on the results, we concluded that all the amines used improved the CO2-loading and absorption kinetics compared with the use of K2CO3 alone. At a certain value CO2 loading, the respective performance of the primary and secondary amines was twice and thrice better, respectively, than the neat K2CO3 solution. Thus, secondary amines had superior absorption capacity and absorption/desorption rate compared to primary amines. Among the secondary amines, pipecolic acid, sarcosine, and isonipecotic acid were determined as the most effective absorption rate promoters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. IPCC, Cambridge University Press, Cambridge, UK, Chapters 1 and 2 (2001).

  2. T. E. Rufford, S. Smart, G. C.Y. Watson, B. F. Graham, J. Boxall, J. C. DinizdaCosta and E. F. May, J. Petrol. Sci. Eng., 94–95, 123 (2012).

    Article  Google Scholar 

  3. A. Aroonwilas and A. Veawab, Int. J. Greenh. Con., 2, 143 (2007).

    Article  Google Scholar 

  4. M. Ismael, R. Sahnoun, A. Suzuki, M. Koyama, H. Tsuboi, N. Hatakeyama, A. Endou, H. Takaba, M. Kubo, S. Shimizu, C.A. Del Carpio and A. Miyamoto, Int. J. Greenh. Con., 5, 612 (2009).

    Article  Google Scholar 

  5. R. Hook, Ind. Eng. Chem. Res., 36, 1779 (1997).

    Article  CAS  Google Scholar 

  6. H. J. Song, S. Park, H. Kim, A. Gaur, J.W. Park and S. J. Lee, Int. J. Greenh. Gas. Con., 11, 64 (2012).

    Article  CAS  Google Scholar 

  7. S. Lee, T. P. Filbern, M. Gray, J.W. Park and H. J. Song, Ind. Eng. Chem. Res., 47, 7419 (2008).

    Article  CAS  Google Scholar 

  8. Y. E. Kim, J. H. Choi, S. C. Nam and Y. I. Yoon, Ind. Eng. Chem. Res., 50, 9306 (2011).

    Article  CAS  Google Scholar 

  9. J. T. Cullinane and G. T. Rochelle, Chem. Eng. Sci., 59, 3619 (2004).

    Article  CAS  Google Scholar 

  10. Y. Liang, D. P. Harrison, R. P. Gupta, D. A. Green and W. J. McMichael, Energy Fuel, 18, 569 (2004).

    Article  CAS  Google Scholar 

  11. J.B. Lee, C. K. Ryu, J. I. Baek, J. H. Lee, T. H. Eom and S. H. Kim, Ind. Eng. Chem. Res., 47, 4465 (2008).

    Article  CAS  Google Scholar 

  12. C. Zhao, X. Chen and C. Zhao, Ind. Eng. Chem. Res., 49, 12212 (2010).

    Article  CAS  Google Scholar 

  13. S. C. Lee, B.Y. Choi, C.K. Ryu, Y. S. Ahn, T. J. Lee and J. C. Kim, Korean J. Chem. Eng., 23, 374 (2006).

    Article  CAS  Google Scholar 

  14. D. M. Muñoz, A. F. Portugal, A. E. Lozano, J.G. De La Campa and J. De Abajo, Energy Environ. Sci., 2, 883 (2009).

    Article  Google Scholar 

  15. S. Ma’mun, H. F. Svendsen, K. A. Hoff and O. Juliussen, Energy Convers. Manage., 48, 251 (2007).

    Article  Google Scholar 

  16. P. Singh and G. F. Versteeg, Process Saf. Environ., 86, 347 (2008).

    Article  CAS  Google Scholar 

  17. J. Van Holst, G. F. Versteeg, D.W. F. Brilman and J. A. Hogendoorn, Chem. Eng. Sci., 64, 59 (2009).

    Article  Google Scholar 

  18. J. Oexmann, C. Hensel and A. Kather, Int. J. Greenh. Gas. Con., 2, 539 (2008).

    Article  CAS  Google Scholar 

  19. F. Bougie, J. Lauzon-Gauthier and M. Iliuta, Chem. Eng. Sci., 64, 2011 (2009).

    Article  CAS  Google Scholar 

  20. J.T. Cullinane and G.T. Rochelle, Chem. Eng. Sci., 54, 3619 (2004).

    Article  Google Scholar 

  21. D. Wappel, The University of Melbourne, Melbourne, Victoria, Australia (2006).

    Google Scholar 

  22. S. Bishnoi and G. T. Rochelle, Chem. Eng. Sci., 55, 5531 (2000).

    Article  CAS  Google Scholar 

  23. J. Hetland and T. Christensen., Appl. Therm. Eng., 28, 2030 (2008).

    Article  CAS  Google Scholar 

  24. Z. Tanga, W. Feia and Y. OLi, Energy Proc., 4, 307 (2011).

    Article  Google Scholar 

  25. Y. Yonn, S. Nam, S. Jung and Y. Kim, Energy Proc., 4, 267 (2011).

    Article  Google Scholar 

  26. H. Knuutila, O. Juliussen and H. F. Svendsen, Chem. Eng. Sci., 65, 2177 (2010).

    Article  CAS  Google Scholar 

  27. J. T. Cullinane and G. T. Rochelle, Fluid Phase Equilib., 227, 197 (2005).

    Article  CAS  Google Scholar 

  28. L. Sumin, M. Youguang, Z. Chunying and S. Shuhua, Chin. J. Chem. Eng., 15, 842 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinwon Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, S., Song, HJ., Lee, MG. et al. Screening test for aqueous solvents used in CO2 capture: K2CO3 used with twelve different rate promoters. Korean J. Chem. Eng. 31, 125–131 (2014). https://doi.org/10.1007/s11814-013-0200-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-013-0200-y

Key words

Navigation