Skip to main content

Advertisement

Log in

Arterial Ischemic Stroke in Children: Risk Factors and Etiologies

  • Stroke (H Adams, Section Editor)
  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Stroke is increasingly recognized as a significant cause of morbidity and mortality in children, and as a financial burden for families and society. Recent studies have identified and confirmed presumptive risk factors, and have identified novel associations with childhood arterial ischemic stroke. A better understanding of risk factors for stroke in children, which differ from the atherosclerotic risk factors in adults, is the first step needed to improve strategies for stroke prevention and intervention, and ultimately minimize the physical, mental, and financial burden of arterial ischemic stroke. Here, we discuss recent advances in research for selected childhood stroke risk factors, highlighting the progress made in our understanding of etiologic mechanisms and pathophysiology, and address the future directions for acute and long-term treatment strategies for pediatric stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Agrawal N, Johnston SC, Wu YW, et al. Imaging data reveal a higher pediatric stroke incidence than prior US estimates. Stroke. 2009;40:3415–21.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Fox CK, Johnston SC, Sidney S, Fullerton HJ. High critical care usage due to pediatric stroke: results of a population-based study. Neurology. 2012;79:420–7.

    Article  PubMed  Google Scholar 

  3. Gandhi SK, McKinney JS, Sedjro JE, et al. Temporal trends in incidence and long-term case fatality of stroke among children from 1994 to 2007. Neurology. 2012;78:1923–9.

    Article  CAS  PubMed  Google Scholar 

  4. George MG, Tong X, Kuklina EV, Labarthe DR. Trends in stroke hospitalizations and associated risk factors among children and young adults, 1995–2008. Ann Neurol. 2011;70:713–21.

    Article  CAS  PubMed  Google Scholar 

  5. Hajek CA, Yeates KO, Anderson V, et al. Cognitive outcomes following arterial ischemic stroke in infants and children. J Child Neurol. 2013 Jun 11 [Epub ahead of print].

  6. Cnossen MH, Aarsen FK, Akker S, et al. Paediatric arterial ischaemic stroke: functional outcome and risk factors. Dev Med Child Neurol. 2010;52:394–9.

    Article  PubMed  Google Scholar 

  7. Pavlovic J, Kaufmann F, Boltshauser E, et al. Neuropsychological problems after paediatric stroke: two year follow-up of Swiss children. Neuropediatrics. 2006;37:13–9.

    Article  CAS  PubMed  Google Scholar 

  8. Steinlin M, Roellin K, Schroth G. Long-term follow-up after stroke in childhood. Eur J Pediatr. 2004;163:245–50.

    Article  PubMed  Google Scholar 

  9. Gardner MA, Hills NK, Sidney S, et al. The 5-year direct medical cost of neonatal and childhood stroke in a population-based cohort. Neurology. 2010;74:372–8.

    Article  CAS  PubMed  Google Scholar 

  10. Fox CK, Glass HC, Sidney S et al. Acute seizures predict epilepsy after childhood stroke. Ann Neurol. 2013 Apr 24 [Epub ahead of print].

  11. Smith-Bindman R, Miglioretti DL, Larson EB. Rising use of diagnostic medical imaging in a large integrated health system. Health Aff (Millwood). 2008;27:1491–502.

    Article  Google Scholar 

  12. Ogden CL, Carroll MD, Kit BK, Flegal KM. Prevalence of obesity and trends in body mass index among US children and adolescents, 1999–2010. JAMA. 2012;307:483–90.

    Article  PubMed  Google Scholar 

  13. Rosner B, Cook NR, Daniels S, Falkner B. Childhood blood pressure trends and risk factors for high blood pressure: the NHANES experience 1988–2008. Hypertension. 2013;62:247–54.

    Article  CAS  PubMed  Google Scholar 

  14. Adams RJ, McKie VC, Hsu L, et al. Prevention of a first stroke by transfusions in children with sickle cell anemia and abnormal results on transcranial Doppler ultrasonography. N Engl J Med. 1998;339:5–11.

    Article  CAS  PubMed  Google Scholar 

  15. McCavit TL, Xuan L, Zhang S, et al. National trends in incidence rates of hospitalization for stroke in children with sickle cell disease. Pediatr Blood Cancer. 2013;60:823–7.

    Article  PubMed  Google Scholar 

  16. Ganesan V, Prengler M, McShane MA, et al. Investigation of risk factors in children with arterial ischemic stroke. Ann Neurol. 2003;53:167–73.

    Article  PubMed  Google Scholar 

  17. Mancini J, Girard N, Chabrol B, et al. Ischemic cerebrovascular disease in children: retrospective study of 35 patients. J Child Neurol. 1997;12:193–9.

    Article  CAS  PubMed  Google Scholar 

  18. Lanthier S, Carmant L, David M, et al. Stroke in children: the coexistence of multiple risk factors predicts poor outcome. Neurology. 2000;54:371–8.

    Article  CAS  PubMed  Google Scholar 

  19. Mackay MT, Wiznitzer M, Benedict SL, et al. Arterial ischemic stroke risk factors: the International Pediatric Stroke Study. Ann Neurol. 2011;69:130–40. This prospective, international series includes 676 children with AIS and identifies several presumptive risk factors for AIS, including arteriopathies, congenital heart disease, and infection stratified by age and geographic region.

    Article  PubMed  Google Scholar 

  20. Golomb MR, Fullerton HJ, Nowak-Gottl U, Deveber G. Male predominance in childhood ischemic stroke: findings from the international pediatric stroke study. Stroke. 2009;40:52–7.

    Article  PubMed  Google Scholar 

  21. Fullerton HJ, Wu YW, Sidney S, Johnston SC. Risk of recurrent childhood arterial ischemic stroke in a population-based cohort: the importance of cerebrovascular imaging. Pediatrics. 2007;119:495–501.

    Article  PubMed  Google Scholar 

  22. Hills NK, Johnston SC, Sidney S, et al. Recent trauma and acute infection as risk factors for childhood arterial ischemic stroke. Ann Neurol. 2012;72:850–8. This retrospective population based study within the Kaiser Permanente Medical Care Program of Northern California included a cohort of 126 children with AIS and identified risk factors for AIS. They found a fourfold increase in AIS in the 4 weeks after a medical encounter for a minor acute infection, and a ninefold increase in the 12 weeks after a head or neck trauma.

    Article  PubMed Central  PubMed  Google Scholar 

  23. Maguire JL, deVeber G, Parkin PC. Association between iron-deficiency anemia and stroke in young children. Pediatrics. 2007;120:1053–7.

    Article  PubMed  Google Scholar 

  24. Procelewska M, Kolcz J, Januszewska K, et al. Coagulation abnormalities and liver function after hemi-Fontan and Fontan procedures – the importance of hemodynamics in the early postoperative period. Eur J Cardiothorac Surg. 2007;31:866–72.

    Article  PubMed  Google Scholar 

  25. Bellinger DC, Jonas RA, Rappaport LA, et al. Developmental and neurologic status of children after heart surgery with hypothermic circulatory arrest or low-flow cardiopulmonary bypass. N Engl J Med. 1995;332:549–55.

    Article  CAS  PubMed  Google Scholar 

  26. Manlhiot C, Menjak IB, Brandao LR, et al. Risk, clinical features, and outcomes of thrombosis associated with pediatric cardiac surgery. Circulation. 2011;124:1511–9.

    Article  CAS  PubMed  Google Scholar 

  27. Almond CS, Morales DL, Blackstone EH, et al. Berlin Heart EXCOR pediatric ventricular assist device for bridge to heart transplantation in US children. Circulation. 2013;127:1702–11.

    Article  CAS  PubMed  Google Scholar 

  28. Niwa K, Nakazawa M, Tateno S, et al. Infective endocarditis in congenital heart disease: Japanese national collaboration study. Heart. 2005;91:795–800.

    Article  CAS  PubMed  Google Scholar 

  29. Hoffmann A, Chockalingam P, Balint OH, et al. Cerebrovascular accidents in adult patients with congenital heart disease. Heart. 2010;96:1223–6.

    Article  CAS  PubMed  Google Scholar 

  30. Rodan L, McCrindle BW, Manlhiot C, et al. Stroke recurrence in children with congenital heart disease. Ann Neurol. 2012;72:103–11.

    Article  PubMed  Google Scholar 

  31. Dowling MM, Hynan LS, Lo W, et al. International Paediatric Stroke Study: stroke associated with cardiac disorders. Int J Stroke. 2013;8 Suppl 100:39–44.

    Article  PubMed  Google Scholar 

  32. Meissner I, Khandheria BK, Heit JA, et al. Patent foramen ovale: innocent or guilty? Evidence from a prospective population-based study. J Am Coll Cardiol. 2006;47:440–5.

    Article  PubMed  Google Scholar 

  33. Carroll JD, Saver JL, Thaler DE, et al. Closure of patent foramen ovale versus medical therapy after cryptogenic stroke. N Engl J Med. 2013;368:1092–100. This prospective, multicenter, randomized trial of 980 adults with cryptogenic ischemic stroke and history of PFO compared medical therapy alone with PFO closure. They found no difference in recurrent ischemic stroke between the groups in their primary endpoint in an intention-to-treat analysis. They report a significant decrease in events after PFO closure compared with medical therapy alone in their prespecified per-protocol and as-treated analyses.

    Article  CAS  PubMed  Google Scholar 

  34. Furlan AJ, Reisman M, Massaro J, et al. Closure or medical therapy for cryptogenic stroke with patent foramen ovale. N Engl J Med. 2012;366:991–9. This prospective, multicenter, randomized trial of 908 adults with cryptogenic ischemic stroke or TIA and history of PFO compared medical therapy alone to PFO closure. They found no significant difference in recurrent stroke, TIA, or death from neurologic causes between the groups after 2 years of follow up.

    Article  CAS  PubMed  Google Scholar 

  35. Meier B, Kalesan B, Mattle HP, et al. Percutaneous closure of patent foramen ovale in cryptogenic embolism. N Engl J Med. 2013;368:1083–91. This prospective, multicenter, randomized trial of 414 participants younger than 60 years of age with PFO and cryptogenic ischemic stroke, transient ischemic attack, or peripheral thromboembolism compared medical therapy alone with PFO closure. They found no significant difference in recurrent stroke or TIA between the groups after 5 years of follow up.

    Article  CAS  PubMed  Google Scholar 

  36. Assistance Publique-Hôpitaux de Paris. Closure of patent foramen ovale or anticoagulants versus antiplatelet therapy to prevent stroke recurrence. Available at: http://clinicaltrials.gov/show/NCT00562289 NLM Identifier: NCT00562289 (accessed 18 September 2013).

  37. Dowling MM, Ikemba CM. Intracardiac shunting and stroke in children: a systematic review. J Child Neurol. 2011;26:72–82.

    Article  PubMed  Google Scholar 

  38. Grau AJ, Buggle F, Becher H, et al. Recent bacterial and viral infection is a risk factor for cerebrovascular ischemia: clinical and biochemical studies. Neurology. 1998;50:196–203.

    Article  CAS  PubMed  Google Scholar 

  39. Bova IY, Bornstein NM, Korczyn AD. Acute infection as a risk factor for ischemic stroke. Stroke. 1996;27:2204–6.

    Article  CAS  PubMed  Google Scholar 

  40. Vergouwen MD, Schut ES, Troost D, van de Beek D. Diffuse cerebral intravascular coagulation and cerebral infarction in pneumococcal meningitis. Neurocrit Care. 2010;13:217–27.

    Article  PubMed  Google Scholar 

  41. Weststrate W, Hijdra A, de Gans J. Brain infarcts in adults with bacterial meningitis. Lancet. 1996;347:399.

    Article  CAS  PubMed  Google Scholar 

  42. Amlie-Lefond C, Bernard TJ, Sebire G, et al. Predictors of cerebral arteriopathy in children with arterial ischemic stroke: results of the International Pediatric Stroke Study. Circulation. 2009;119:1417–23.

    Article  PubMed  Google Scholar 

  43. Berger TM, Caduff JH, Gebbers JO. Fatal varicella-zoster virus antigen-positive giant cell arteritis of the central nervous system. Pediatr Infect Dis J. 2000;19:653–6.

    Article  CAS  PubMed  Google Scholar 

  44. Hayman M, Hendson G, Poskitt KJ, Connolly MB. Postvaricella angiopathy: report of a case with pathologic correlation. Pediatr Neurol. 2001;24:387–9.

    Article  CAS  PubMed  Google Scholar 

  45. Hausler MG, Ramaekers VT, Reul J, et al. Early and late onset manifestations of cerebral vasculitis related to varicella zoster. Neuropediatrics. 1998;29:202–7.

    Article  CAS  PubMed  Google Scholar 

  46. Moriuchi H, Rodriguez W. Role of varicella-zoster virus in stroke syndromes. Pediatr Infect Dis J. 2000;19:648–53.

    Article  CAS  PubMed  Google Scholar 

  47. Fullerton HJ, Elkind MS, Barkovich AJ, et al. The vascular effects of infection in Pediatric Stroke (VIPS) Study. J Child Neurol. 2011;26:1101–10.

    Article  PubMed Central  PubMed  Google Scholar 

  48. Griessenauer CJ, Fleming JB, Richards BF, et al. Timing and mechanism of ischemic stroke due to extracranial blunt traumatic cerebrovascular injury. J Neurosurg. 2013;118:39–7404.

    Article  Google Scholar 

  49. Fabian TC, George Jr SM, Croce MA, et al. Carotid artery trauma: management based on mechanism of injury. J Trauma. 1990;30:953–61.

    Article  CAS  PubMed  Google Scholar 

  50. Bromberg WJ, Collier BC, Diebel LN, et al. Blunt cerebrovascular injury practice management guidelines: the Eastern Association for the Surgery of Trauma. J Trauma. 2010;68:471–7.

    PubMed  Google Scholar 

  51. Wang AC, Charters MA, Thawani JP, et al. Evaluating the use and utility of noninvasive angiography in diagnosing traumatic blunt cerebrovascular injury. J Trauma Acute Care Surg. 2012;72:1601–10.

    Article  PubMed  Google Scholar 

  52. Jones TS, Burlew CC, Kornblith LZ, et al. Blunt cerebrovascular injuries in the child. Am J Surg. 2012;204:7–10.

    Article  PubMed  Google Scholar 

  53. Yang FH, Wang H, Zhang JM, Liang HY. Clinical features and risk factors of cerebral infarction after mild head trauma under 18 months of age. Pediatr Neurol. 2013;48:220–6.

    Article  CAS  PubMed  Google Scholar 

  54. Nabika S, Kiya K, Satoh H, et al. Ischemia of the internal capsule due to mild head injury in a child. Pediatr Neurosurg. 2007;43:312–5.

    Article  CAS  PubMed  Google Scholar 

  55. Cushing KE, Ramesh V, Gardner-Medwin D, et al. Tethering of the vertebral artery in the congenital arcuate foramen of the atlas vertebra: a possible cause of vertebral artery dissection in children. Dev Med Child Neurol. 2001;43:491–6.

    Article  CAS  PubMed  Google Scholar 

  56. Dadsetan MR, Skerhut HE. Rotational vertebrobasilar insufficiency secondary to vertebral artery occlusion from fibrous band of the longus coli muscle. Neuroradiology. 1990;32:514–5.

    Article  CAS  PubMed  Google Scholar 

  57. Hasan I, Wapnick S, Tenner MS, Couldwell W. Vertebral artery dissection in children: a comprehensive review. Pediatr Neurosurg. 2002;37:168–77.

    Article  PubMed  Google Scholar 

  58. Lu DC, Gupta N, Mummaneni PV. Minimally invasive decompression of a suboccipital osseous prominence causing rotational vertebral artery occlusion. Case report. J Neurosurg Pediatr. 2009;4:191–5.

    Article  PubMed  Google Scholar 

  59. Saito K, Hirano M, Taoka T, et al. Artery-to-artery embolism with a mobile mural thrombus due to rotational vertebral artery occlusion. J Neuroimaging. 2010;20:284–6.

    Article  PubMed  Google Scholar 

  60. Faris AA, Poser CM, Wilmore DW, Agnew CH. Radiologic visualization of neck vessels in healthy men. Neurology. 1963;13:386–96.

    Article  CAS  PubMed  Google Scholar 

  61. Sakaguchi M, Kitagawa K, Hougaku H, et al. Mechanical compression of the extracranial vertebral artery during neck rotation. Neurology. 2003;61:845–7.

    Article  CAS  PubMed  Google Scholar 

  62. Fox CK, Gupta N, Lawton M, et al. Posterior circulation stroke in children due to cervical spine abnormalities. American Heart Association/American Stroke Association International Stroke Conference and Nursing Symposium; February 2103; Honolulu, Hawaii 2013. p. A77.

  63. Dowling MM, Lee N, Quinn CT, et al. Prevalence of intracardiac shunting in children with sickle cell disease and stroke. J Pediatr. 2010;156:645–50.

    Article  PubMed  Google Scholar 

  64. Earley CJ, Kittner SJ, Feeser BR, et al. Stroke in children and sickle-cell disease: Baltimore-Washington Cooperative Young Stroke Study. Neurology. 1998;51:169–76.

    Article  CAS  PubMed  Google Scholar 

  65. Ohene-Frempong K, Weiner SJ, Sleeper LA, et al. Cerebrovascular accidents in sickle cell disease: rates and risk factors. Blood. 1998;91:288–94.

    CAS  PubMed  Google Scholar 

  66. Adams RJ, Nichols FT, Figueroa R, et al. Transcranial Doppler correlation with cerebral angiography in sickle cell disease. Stroke. 1992;23:1073–7.

    Article  CAS  PubMed  Google Scholar 

  67. Adams RJ, McKie VC, Carl EM, et al. Long-term stroke risk in children with sickle cell disease screened with transcranial Doppler. Ann Neurol. 1997;42:699–704.

    Article  CAS  PubMed  Google Scholar 

  68. Bishop S, Matheus MG, Abboud MR, et al. Effect of chronic transfusion therapy on progression of neurovascular pathology in pediatric patients with sickle cell anemia. Blood Cells Mol Dis. 2011;47:125–8.

    Article  PubMed  Google Scholar 

  69. Webb J, Kwiatkowski JL. Stroke in patients with sickle cell disease. Expert Rev Hematol. 2013;6:301–16.

    Article  CAS  PubMed  Google Scholar 

  70. Setty BN, Stuart MJ, Dampier C, et al. Hypoxaemia in sickle cell disease: biomarker modulation and relevance to pathophysiology. Lancet. 2003;362:1450–5.

    Article  CAS  PubMed  Google Scholar 

  71. Connes P, Verlhac S, Bernaudin F. Advances in understanding the pathogenesis of cerebrovascular vasculopathy in sickle cell anaemia. Br J Haematol. 2013;161:484–98.

    Article  CAS  PubMed  Google Scholar 

  72. Wood KC, Hsu LL, Gladwin MT. Sickle cell disease vasculopathy: a state of nitric oxide resistance. Free Radic Biol Med. 2008;44:1506–28.

    Article  CAS  PubMed  Google Scholar 

  73. Kato GJ, Hsieh M, Machado R, et al. Cerebrovascular disease associated with sickle cell pulmonary hypertension. Am J Hematol. 2006;81:503–10.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Merkel KH, Ginsberg PL, Parker Jr JC, Post MJ. Cerebrovascular disease in sickle cell anemia: a clinical, pathological and radiological correlation. Stroke. 1978;9:45–52.

    Article  CAS  PubMed  Google Scholar 

  75. Rothman SM, Fulling KH, Nelson JS. Sickle cell anemia and central nervous system infarction: a neuropathological study. Ann Neurol. 1986;20:684–90.

    Article  CAS  PubMed  Google Scholar 

  76. Ware RE, Helms RW. Stroke With Transfusions Changing to Hydroxyurea (SWiTCH). Blood. 2012;119:3925–32. This prospective, randomized, non-inferiority trial in children with SCA and previous stroke compared an alternative treatment (hydroxyurea/phlebotomy) with standard therapy (transfusions/chelations) for secondary stroke prevention. In an interim analysis, they found fewer recurrent strokes in the standard treatment arm, with no change in liver iron content between the groups, thus prompting early study closure.

    Article  CAS  PubMed  Google Scholar 

  77. Aygun B, Wruck LM, Schultz WH, et al. Chronic transfusion practices for prevention of primary stroke in children with sickle cell anemia and abnormal TCD velocities. Am J Hematol. 2012;87:428–30.

    Article  PubMed  Google Scholar 

  78. Bowers DC, Liu Y, Leisenring W, et al. Late-occurring stroke among long-term survivors of childhood leukemia and brain tumors: a report from the Childhood Cancer Survivor Study. J Clin Oncol. 2006;24:5277–82.

    Article  PubMed  Google Scholar 

  79. Mueller S, Sear K, Hills NK, et al. Risk of first and recurrent stroke in childhood cancer survivors treated with cranial and cervical radiation therapy. Int J Radiat Oncol Biol Phys. 2013;86:643–8.

    Article  PubMed  Google Scholar 

  80. Bitzer M, Topka H. Progressive cerebral occlusive disease after radiation therapy. Stroke. 1995;26:131–6.

    Article  CAS  PubMed  Google Scholar 

  81. Morris B, Partap S, Yeom K, et al. Cerebrovascular disease in childhood cancer survivors: A Children's Oncology Group Report. Neurology. 2009;73:1906–13.

    Article  CAS  PubMed  Google Scholar 

  82. Mueller S, Fullerton HJ, Stratton K, et al. Radiation, atherosclerotic risk factors, and stroke risk in survivors of pediatric cancer: a report from the Childhood Cancer Survivor Study. Int J Radiat Oncol Biol Phys. 2013;86:649–55.

    Article  PubMed  Google Scholar 

  83. Haddy N, Mousannif A, Tukenova M, et al. Relationship between the brain radiation dose for the treatment of childhood cancer and the risk of long-term cerebrovascular mortality. Brain. 2011;134:1362–72.

    Article  PubMed  Google Scholar 

  84. Campen CJ, Kranick SM, Kasner SE, et al. Cranial irradiation increases risk of stroke in pediatric brain tumor survivors. Stroke. 2012;43:3035–40.

    Article  PubMed Central  PubMed  Google Scholar 

  85. Dorresteijn LD, Kappelle AC, Scholz NM, et al. Increased carotid wall thickening after radiotherapy on the neck. Eur J Cancer. 2005;41:1026–30.

    Article  PubMed  Google Scholar 

  86. Robbins ME, Zhao W. Chronic oxidative stress and radiation-induced late normal tissue injury: a review. Int J Radiat Biol. 2004;80:251–9.

    Article  CAS  PubMed  Google Scholar 

  87. Children’s Oncology Group. Long-term follow-up guidelines for survivors of childhood, adolescent, and young adult cancers. Arcadia: Children’s Oncology Group; 2008.

    Google Scholar 

  88. Kenet G, Lutkhoff LK, Albisetti M, et al. Impact of thrombophilia on risk of arterial ischemic stroke or cerebral sinovenous thrombosis in neonates and children: a systematic review and meta-analysis of observational studies. Circulation. 2010;121:1838–47.

    Article  PubMed  Google Scholar 

  89. Goldenberg NA, Bernard TJ, Hillhouse J, et al. Elevated lipoprotein (a), small apolipoprotein (a), and the risk of arterial ischemic stroke in North American children. Haematologica. 2013;98:802–7.

    Article  CAS  PubMed  Google Scholar 

  90. Joachim E, Goldenberg NA, Bernard TJ, et al. The Methylenetetrahydrofolate reductase polymorphism (MTHFR c.677C>T) and elevated plasma homocysteine levels in a U.S. pediatric population with incident thromboembolism. Thromb Res. 2013;132:170–4.

    Article  CAS  PubMed  Google Scholar 

  91. Tatum J, Farid H, Cooke D, et al. Mechanical embolectomy for treatment of large vessel acute ischemic stroke in children. J Neurointerv Surg. 2013;5:128–34.

    Article  PubMed  Google Scholar 

  92. Smith WS, Sung G, Saver J, et al. Mechanical thrombectomy for acute ischemic stroke: final results of the Multi MERCI trial. Stroke. 2008;39:1205–12.

    Article  PubMed  Google Scholar 

  93. Amlie-Lefond C, Chan AK, Kirton A, et al. Thrombolysis in acute childhood stroke: design and challenges of the thrombolysis in pediatric stroke clinical trial. Neuroepidemiology. 2009;32:279–86.

    Article  PubMed  Google Scholar 

  94. Rea D, Brandsema JF, Armstrong D, et al. Cerebral arteriopathy in children with neurofibromatosis type 1. Pediatrics. 2009;124:e476–83.

    Article  PubMed  Google Scholar 

  95. Hankinson TC, Bohman LE, Heyer G, et al. Surgical treatment of moyamoya syndrome in patients with sickle cell anemia: outcome following encephaloduroarteriosynangiosis. J Neurosurg Pediatr. 2008;1:211–6.

    Article  PubMed  Google Scholar 

  96. Guzman R, Lee M, Achrol A, et al. Clinical outcome after 450 revascularization procedures for moyamoya disease. Clinical article. J Neurosurg. 2009;111:927–35.

    Article  PubMed  Google Scholar 

  97. Goldenberg NA, Bernard TJ, Fullerton HJ, et al. Antithrombotic treatments, outcomes, and prognostic factors in acute childhood-onset arterial ischaemic stroke: a multicentre, observational, cohort study. Lancet Neurol. 2009;8:1120–7.

    Article  CAS  PubMed  Google Scholar 

  98. Beslow LA, Kasner SE, Smith SE, et al. Concurrent validity and reliability of retrospective scoring of the Pediatric National Institutes of Health Stroke Scale. Stroke. 2012;43:341–5.

    Article  PubMed Central  PubMed  Google Scholar 

  99. Bernard TJ, Manco-Johnson MJ, Lo W, et al. Towards a consensus-based classification of childhood arterial ischemic stroke. Stroke. 2012;43:371–7.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Adam L. Numis declares that he has no conflict of interest.

Christine K. Fox has received pediatric stroke research grants while an Assistant Professor, Division of Child Neurology, at the University of California, San Francisco.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine K. Fox.

Additional information

This article is part of the Topical Collection on Stroke

Rights and permissions

Reprints and permissions

About this article

Cite this article

Numis, A.L., Fox, C.K. Arterial Ischemic Stroke in Children: Risk Factors and Etiologies. Curr Neurol Neurosci Rep 14, 422 (2014). https://doi.org/10.1007/s11910-013-0422-8

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11910-013-0422-8

Keywords

Navigation