Skip to main content

Advertisement

Log in

The Role of Dust Mites in Allergy

  • Published:
Clinical Reviews in Allergy & Immunology Aims and scope Submit manuscript

Abstract

House dust mites are an unsurpassed cause of atopic sensitization and allergic illness throughout the world. The major allergenic dust mites Dermatophagoides pteronyssinus, Dermatophagoides farinae, Euroglyphus maynei, and Blomia tropicalis are eight-legged members of the Arachnid class. Their approximately 3-month lifespan comprises egg, larval, protonymph, tritonymph, and adult stages, with adults, about one fourth to one third of a millimeter in size, being at the threshold of visibility. The geographic and seasonal distributions of dust mites are determined by their need for adequate humidity, while their distribution within substrates is further determined by their avoidance of light. By contacting the epithelium of the eyes, nose, lower airways, skin, and gut, the allergen-containing particles of dust mites can induce sensitization and atopic symptoms in those organs. Various mite allergens, contained primarily in mite fecal particles but also in shed mite exoskeletons and decaying mite body fragments, have properties that include proteolytic activity, homology with the lipopolysaccharide-binding component of Toll-like receptor 4, homology with other invertebrate tropomyosins, and chitin-cleaving and chitin-binding activity. Mite proteases have direct epithelial effects including the breaching of tight junctions and the stimulation of protease-activated receptors, the latter inducing pruritus, epithelial dysfunction, and cytokine release. Other components, including chitin, unmethylated mite and bacterial DNA, and endotoxin, activate pattern recognition receptors of the innate immune system and act as adjuvants promoting sensitization to mite and other allergens. Clinical conditions resulting from mite sensitization and exposure include rhinitis, sinusitis, conjunctivitis, asthma, and atopic dermatitis. Systemic allergy symptoms can also occur from the ingestion of cross-reacting invertebrates, such as shrimp or snail, or from the accidental ingestion of mite-contaminated foods. Beyond their direct importance as a major allergen source, an understanding of dust mites leads to insights into the nature of atopy and of allergic sensitization in general.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Calderon MA, Linneberg A, Kleine-Tebbe J et al (2015) Respiratory allergy caused by house dust mites: what do we really know? J Allergy Clin Immunol 136:38–48

    PubMed  Google Scholar 

  2. Sanchez-Borges M, Fernandez-Caldas E, Thomas WR et al (2017) International consensus (ICON) on: clinical consequences of mite hypersensitivity, a global problem. World Allergy Organ J 10:14

    PubMed  PubMed Central  Google Scholar 

  3. Colloff MJ (1998) Taxonomy and identification of dust mites. Allergy 53:7–12

    CAS  PubMed  Google Scholar 

  4. Commins SP, Satinover SM, Hosen J, Mozena J, Borish L, Lewis BD, Woodfolk JA, Platts-Mills TAE (2009) Delayed anaphylaxis, angioedema, or urticaria after consumption of red meat in patients with IgE antibodies specific for galactose-alpha-1,3-galactose. J Allergy Clin Immunol 123:426–433

    CAS  PubMed  Google Scholar 

  5. Spieksma FT, Dieges PH (2004) The history of the finding of the house dust mite. J Allergy Clin Immunol 113:573–576

    PubMed  Google Scholar 

  6. Voorhorst R, Spieksma FT, Varekamp H, Leupen M, Lyklema A (1967) The house-dust mite (Dermatophagoides pteronyssinus) and the allergens it produces. Identity with the house-dust allergen. J Allergy (Cairo) 39:325–339

    Google Scholar 

  7. Miyamoto T, Oshima S, Ishizaki T, Sato SH (1968) Allergenic identity between the common floor mite (Dermatophagoides farinae Hughes, 1961) and house dust as a causative antigen in bronchial asthma. J Allergy 42:14–28

    CAS  PubMed  Google Scholar 

  8. Tovey ER, Chapman MD, Platts-Mills TA (1981) Mite faeces are a major source of house dust allergens. Nature 289:592–593

    CAS  PubMed  Google Scholar 

  9. Colloff M (2009) Dust mites. CSIRO Pub, Collingwood

    Google Scholar 

  10. Arlian L, Rapp C, Ahmed S (1990) Development of Dermatophagoides pteronyssinus (Acari: Pyroglyphidae). J Med Entomol 27:1035–1040

    CAS  PubMed  Google Scholar 

  11. Arlian LG (1992) Water balance and humidity requirements of house dust mites. Exp Appl Acarol 16:15–35

    CAS  PubMed  Google Scholar 

  12. De Boer R, Kuller K, Kahl O (1998) Water balance of Dermatophagoides pteronyssinus (Acari: Pyroglyphidae) maintained by brief daily spells of elevated air humidity. J Med Entomol 35:905–910

    PubMed  Google Scholar 

  13. Arlian LG, Neal JS, Vyszenski-Moher DL (1999) Fluctuating hydrating and dehydrating relative humidities effects on the life cycle of Dermatophagoides farinae (Acari: Pyroglyphidae). J Med Entomol 36:457–461

    CAS  PubMed  Google Scholar 

  14. Ellingsen IJ (1976) Permeability to water in different adaptive phases of the same instar in the American house-dust mite. Acarologia 17:734–744

    CAS  PubMed  Google Scholar 

  15. Arlian LG, Dippold JS (1996) Development and fecundity of Dermatophagoides farinae (Acari: Pyroglyphidae). J Med Entomol 33:257–260

    CAS  PubMed  Google Scholar 

  16. Mahakittikun V, Boitano JJ, Ninsanit P, Wangapai T, Ralukruedej K (2011) Effects of high and low temperatures on development time and mortality of house dust mite eggs. Exp Appl Acarol 55:339–347

    PubMed  Google Scholar 

  17. Mahakittikun V, Wongkamchai S, Ahamad MH, Vichyanond P (2001) Killing mites with heat. Allergy 56:262

    CAS  PubMed  Google Scholar 

  18. McDonald LG, Tovey E (1992) The role of water temperature and laundry procedures in reducing house dust mite populations and allergen content of bedding. J Allergy Clin Immunol 90:599–608

    CAS  PubMed  Google Scholar 

  19. Feichtner CR, Arlian LG, Morgan MS, Vyszenski-Moher DL (2018) Home freezers kill house dust mites. J Allergy Clin Immunol 141:451–454

    PubMed  Google Scholar 

  20. Colloff MJ (1992) Exposure to house dust mites in homes of people with atopic dermatitis. Br J Dermatol 127:322–327

    CAS  PubMed  Google Scholar 

  21. Beck HI, Bjerring P (1987) House dust mites and human dander. Allergy 42:471–472

    CAS  PubMed  Google Scholar 

  22. Wharton GW, Brody AR (1972) The peritrophic membrane of the mite, Dermatophagoides farinae: Acariformes. J Parasitol 58:801–804

    CAS  PubMed  Google Scholar 

  23. Klimov PB, B OC (2013) Is permanent parasitism reversible?—critical evidence from early evolution of house dust mites. Syst Biol 62:411–423

    PubMed  Google Scholar 

  24. Murray AB, Ferguson AC, Morrison BJ (1985) Sensitization to house dust mites in different climatic areas. J Allergy Clin Immunol 76:108–112

    CAS  PubMed  Google Scholar 

  25. Green W, Woolcock AJ, Dowse G (1982) House dust mites in blankets and houses in the highlands of Papua New Guinea. P N G Med J 25:219–222

    CAS  PubMed  Google Scholar 

  26. Spieksma FT, Zuidema P, Leupen MJ (1971) High altitude and house-dust mites. Br Med J 1:82–84

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Vervloet D, Penaud A, Razzouk H et al (1982) Altitude and house dust mites. J Allergy Clin Immunol 69:290–296

    CAS  PubMed  Google Scholar 

  28. Charpin D, Birnbaum J, Haddi E, Genard G, Lanteaume A, Toumi M, Faraj F, van der Brempt X, Vervloet D (1991) Altitude and allergy to house-dust mites. A paradigm of the influence of environmental exposure on allergic sensitization. Am Rev Respir Dis 143:983–986

    CAS  PubMed  Google Scholar 

  29. Gitoho F, Rees P (1971) High altitude and house-dust mites. Br Med J 3:475

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Sanchez-Medina M, Zarante I (1996) Dust mites at high altitude in a tropical climate. J Allergy Clin Immunol 97:1167–1168

    CAS  PubMed  Google Scholar 

  31. Nelson HS, Fernandez-Caldas E (1995) Prevalence of house dust mites in the Rocky Mountain states. Ann Allergy Asthma Immunol 75:337–339

    CAS  PubMed  Google Scholar 

  32. Arlian LG, Bernstein D, Bernstein IL, Friedman S, Grant A, Lieberman P, Lopez M, Metzger J, Platts-Mills T, Schatz M, Spector S, Wasserman SI, Zeiger RS (1992) Prevalence of dust mites in the homes of people with asthma living in eight different geographic areas of the United States. J Allergy Clin Immunol 90:292–300

    CAS  PubMed  Google Scholar 

  33. Leaderer BP, Belanger K, Triche E, Holford T, Gold DR, Kim Y, Jankun T, Ren P, McSharry JE, Platts-Mills TAE, Chapman MD, Bracken MB (2002) Dust mite, cockroach, cat, and dog allergen concentrations in homes of asthmatic children in the northeastern United States: impact of socioeconomic factors and population density. Environ Health Perspect 110:419–425

    PubMed  PubMed Central  Google Scholar 

  34. van Strien RT, Gehring U, Belanger K, Triche E, Gent J, Bracken MB, Leaderer BP (2004) The influence of air conditioning, humidity, temperature and other household characteristics on mite allergen concentrations in the northeastern United States. Allergy 59:645–652

    PubMed  Google Scholar 

  35. Wilson J, Dixon SL, Breysse P, Jacobs D, Adamkiewicz G, Chew GL, Dearborn D, Krieger J, Sandel M, Spanier A (2010) Housing and allergens: a pooled analysis of nine US studies. Environ Res 110:189–198

    CAS  PubMed  Google Scholar 

  36. Chew GL, Reardon AM, Correa JC, Young M, Acosta L, Mellins R, Chew FT, Perzanowski MS (2009) Mite sensitization among Latina women in New York, where dust-mite allergen levels are typically low. Indoor Air 19:193–197

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Babe KS Jr, Arlian LG, Confer PD, Kim R (1995) House dust mite (Dermatophagoides farinae and Dermatophagoides pteronyssinus) prevalence in the rooms and hallways of a tertiary care hospital. J Allergy Clin Immunol 95:801–805

    PubMed  Google Scholar 

  38. Sander I, Lotz A, Neumann HD, Czibor C, Flagge A, Zahradnik E, Raulf M (2018) Indoor allergen levels in settled airborne dust are higher in day-care centers than at home. Allergy 73:1263–1275

    PubMed  Google Scholar 

  39. Custovic A, Taggart SC, Woodcock A (1994) House dust mite and cat allergen in different indoor environments. Clin Exp Allergy 24:1164–1168

    CAS  PubMed  Google Scholar 

  40. Massey DG, Furumizo RT, Fournier-Massey G, Kwock D, Harris ST (1988) House dust mites in university dormitories. Ann Allergy 61:229–232

    CAS  PubMed  Google Scholar 

  41. Sander I, Zahradnik E, Kraus G, Mayer S, Neumann HD, Fleischer C, Brüning T, Raulf-Heimsoth M (2012) Domestic mite antigens in floor and airborne dust at workplaces in comparison to living areas: a new immunoassay to assess personal airborne allergen exposure. PLoS One 7:e52981

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Engelhart ST, Wilmes-Link M, Gilges S, Exner M, Kramer MH (1999) Exposure of submarine personnel to house dust mite allergens. J Allergy Clin Immunol 104:242–243

    CAS  PubMed  Google Scholar 

  43. Ott CM, Bruce RJ, Pierson DL (2004) Microbial characterization of free floating condensate aboard the Mir space station. Microb Ecol 47:133–136

    CAS  PubMed  Google Scholar 

  44. Arlian LG, Bernstein IL, Gallagher JS (1982) The prevalence of house dust mites, Dermatophagoides spp, and associated environmental conditions in homes in Ohio. J Allergy Clin Immunol 69:527–532

    CAS  PubMed  Google Scholar 

  45. Lintner TJ, Brame KA (1993) The effects of season, climate, and air-conditioning on the prevalence of Dermatophagoides mite allergens in household dust. J Allergy Clin Immunol 91:862–867

    CAS  PubMed  Google Scholar 

  46. Platts-Mills TA, Hayden ML, Chapman MD, Wilkins SR (1987) Seasonal variation in dust mite and grass-pollen allergens in dust from the houses of patients with asthma. J Allergy Clin Immunol 79:781–791

    CAS  PubMed  Google Scholar 

  47. Arlian LG, Neal JS, Morgan MS, Vyszenski-Moher DL, Rapp CM, Alexander AK (2001) Reducing relative humidity is a practical way to control dust mites and their allergens in homes in temperate climates. J Allergy Clin Immunol 107:99–104

    CAS  PubMed  Google Scholar 

  48. Arlian LG, Neal JS, Vyszenski-Moher DL (1999) Reducing relative humidity to control the house dust mite Dermatophagoides farinae. J Allergy Clin Immunol 104:852–856

    CAS  PubMed  Google Scholar 

  49. Johnston JD, Barney TP, Crandall JH, Brown MA, Westover TR, Paulson SM, Smith MS, Weber KS (2018) Prevalence of house dust mite allergens in low-income homes with evaporative coolers in a semiarid climate. Arch Environ Occup Health 73:38–41

    PubMed  Google Scholar 

  50. Prasad C, Hogan MB, Peele K, Wilson NW (2009) Effect of evaporative coolers on skin test reactivity to dust mites and molds in a desert environment. Allergy Asthma Proc 30:624–627

    PubMed  Google Scholar 

  51. Arbes SJ Jr, Cohn RD, Yin M, Muilenberg ML, Burge HA, Friedman W, Zeldin DC (2003) House dust mite allergen in US beds: results from the First National Survey of Lead and Allergens in Housing. J Allergy Clin Immunol 111:408–414

    PubMed  Google Scholar 

  52. Arlian LG, Brandt RL, Bernstein R (1978) Occurrence of house dust mites, Dermatophagoides spp. (Acari: Pyroglyphidae), during the heating season. J Med Entomol 15:35–42

    CAS  PubMed  Google Scholar 

  53. Wickens K, Siebers R, Ellis I et al (1997) Determinants of house dust mite allergen in homes in Wellington, New Zealand. Clin Exp Allergy 27:1077–1085

    CAS  PubMed  Google Scholar 

  54. Abbott J, Cameron J, Taylor B (1981) House dust mite counts in different types of mattresses, sheepskins and carpets, and a comparison of brushing and vacuuming collection methods. Clin Allergy 11:589–595

    CAS  PubMed  Google Scholar 

  55. Garrett MH, Hooper BM, Hooper MA (1998) Indoor environmental factors associated with house-dust-mite allergen (Der p 1) levels in south-eastern Australian houses. Allergy 53:1060–1065

    CAS  PubMed  Google Scholar 

  56. Mihrshahi S, Marks G, Vanlaar C, Tovey E, Peat J (2002) Predictors of high house dust mite allergen concentrations in residential homes in Sydney. Allergy 57:137–142

    CAS  PubMed  Google Scholar 

  57. Kemp TJ, Siebers RW, Fishwick D, O'Grady GB, Fitzharris P, Crane J (1996) House dust mite allergen in pillows. BMJ 313:916

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Hallam C, Custovic A, Simpson B, Houghton N, Simpson A, Woodcock A (1999) Mite allergens in feather and synthetic pillows. Allergy 54:407–408

    CAS  PubMed  Google Scholar 

  59. Siebers R, Nam HS, Crane J (2004) Permeability of synthetic and feather pillows to live house dust mites and house dust. Clin Exp Allergy 34:888–890

    CAS  PubMed  Google Scholar 

  60. Mills S, Siebers R, Wickens K, Crane J, Purdie G, Fitzharris P (2002) House dust mite allergen levels in individual bedding components in New Zealand. N Z Med J 115:151–153

    PubMed  Google Scholar 

  61. Mosbech H, Korsgaard J, Lind P (1988) Control of house dust mites by electrical heating blankets. J Allergy Clin Immunol 81:706–710

    CAS  PubMed  Google Scholar 

  62. Ingham PE, Ingham DM (1976) House dust mites and infant-use sheepskins. Med J Aust 1:302–304

    CAS  PubMed  Google Scholar 

  63. Sawyer G, Kemp T, Shaw R, Patchett K, Siebers R, Lewis S, Beasley R, Crane J, Fitzharris P (1998) Biologic pollution in infant bedding in New Zealand: high allergen exposure during a vulnerable period. J Allergy Clin Immunol 102:765–770

    CAS  PubMed  Google Scholar 

  64. Gaig P, Enrique E, Garcia-Ortega P, Olona M, del Mar San Miguel M, Richart C (1999) Asthma, mite sensitization, and sleeping in bunks. Ann Allergy Asthma Immunol 82:531–533

    CAS  PubMed  Google Scholar 

  65. de Oliveira CH, Binotti RS, Muniz JR, dos Santos JC, do Prado AP, de Pinho AJ Jr (2003) Comparison of house dust mites found on different mattress surfaces. Ann Allergy Asthma Immunol 91:559–562

    PubMed  Google Scholar 

  66. Pauli G, de Blay F, Bessot JC, Ott M, Gries P (1997) The role of mattress bases in the mite infestation of dwellings. J Allergy Clin Immunol 99:261–263

    CAS  PubMed  Google Scholar 

  67. Causer S, Shorter C, Sercombe J (2006) Effect of floorcovering construction on content and vertical distribution of house dust mite allergen, Der p I. J Occup Environ Hyg 3:161–168 quiz D45

    PubMed  Google Scholar 

  68. Sercombe JK, Liu-Brennan D, Causer SM, Tovey ER (2007) The vertical distribution of house dust mite allergen in carpet and the effect of dry vacuum cleaning. Int J Hyg Environ Health 210:43–50

    PubMed  Google Scholar 

  69. Tovey ER, Mahmic A, McDonald LG (1995) Clothing—an important source of mite allergen exposure. J Allergy Clin Immunol 96:999–1001

    CAS  PubMed  Google Scholar 

  70. Mollet JA, Robinson WH (1996) Dispersal of American house dust mites (Acari:Pyroglyphidae) in a residence. J Med Entomol 33:844–847

    CAS  PubMed  Google Scholar 

  71. Wu FF, Wu MW, Ting MH, Crane J, Siebers R (2014) Cat, dog and house dust mite allergen levels on children’s soft toys. J Asthma 51:75–78

    CAS  PubMed  Google Scholar 

  72. Spieksma FT (1976) Cultures of house-dust mites on animal skin scales. Allergol Immunopathol 4:419–428

    CAS  Google Scholar 

  73. Eaton KK, Downing FS, Griffiths DA, Hockland S, Lynch S (1985) Housedust mites (D. pteronyssinus) in pets’ beds and their relation to dust allergy. Clin Allergy 15:151–154

    CAS  PubMed  Google Scholar 

  74. Matsumoto T, Satoh A (2004) The occurrence of mite-containing wheat flour. Pediatr Allergy Immunol 15:469–471

    PubMed  Google Scholar 

  75. Gill C, McEwan N, McGarry J, Nuttall T (2011) House dust and storage mite contamination of dry dog food stored in open bags and sealed boxes in 10 domestic households. Vet Dermatol 22:162–172

    PubMed  Google Scholar 

  76. Neal JS, Arlian LG, Morgan MS (2002) Relationship among house-dust mites, Der 1, Fel d 1, and Can f 1 on clothing and automobile seats with respect to densities in houses. Ann Allergy Asthma Immunol 88:410–415

    CAS  PubMed  Google Scholar 

  77. Taketomi EA, Justino CM, Pereira FL, Segundo GR, Sopelete MC, Sung SJ, Silva DA (2006) Taxis but not private cars are mite allergen reservoirs in Brazil. J Investig Allergol Clin Immunol 16:34–36

    CAS  PubMed  Google Scholar 

  78. Arlian LG, Neal JS, Morgan MS, Rapp CM, Clobes AL (2001) Distribution and removal of cat, dog and mite allergens on smooth surfaces in homes with and without pets. Ann Allergy Asthma Immunol 87:296–302

    CAS  PubMed  Google Scholar 

  79. Wood RA, Mudd KE, Eggleston PA (1992) The distribution of cat and dust mite allergens on wall surfaces. J Allergy Clin Immunol 89:126–130

    CAS  PubMed  Google Scholar 

  80. Kanchongkittiphon W, Sheehan WJ, Friedlander J, Chapman MD, King EM, Martirosyan K, Baxi SN, Permaul P, Gaffin JM, Kopel L, Bailey A, Fu C, Petty CR, Gold DR, Phipatanakul W (2014) Allergens on desktop surfaces in preschools and elementary schools of urban children with asthma. Allergy 69:960–963

    PubMed  Google Scholar 

  81. de Boer R, van der Hoeven WA, Stapel SO (1995) The decay of house dust mite allergens, Der p I and Der p II, under natural conditions. Clin Exp Allergy 25:765–770

    PubMed  Google Scholar 

  82. Tovey ER, Chapman MD, Wells CW, Platts-Mills TA (1981) The distribution of dust mite allergen in the houses of patients with asthma. Am Rev Respir Dis 124:630–635

    CAS  PubMed  Google Scholar 

  83. Tovey ER, Willenborg CM, Crisafulli DA, Rimmer J, Marks GB (2013) Most personal exposure to house dust mite aeroallergen occurs during the day. PLoS One 8:e69900

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Woodfolk JA, Commins SP, Schuyler AJ, Erwin EA, Platts-Mills TA (2015) Allergens, sources, particles, and molecules: why do we make IgE responses? Allergol Int 64:295–303

    CAS  PubMed  PubMed Central  Google Scholar 

  85. de Blay F, Heymann PW, Chapman MD, Platts-Mills TA (1991) Airborne dust mite allergens: comparison of group II allergens with group I mite allergen and cat-allergen Fel d I. J Allergy Clin Immunol 88:919–926

    PubMed  Google Scholar 

  86. Custovic A, Woodcock H, Craven M, Hassall R, Hadley E, Simpson A, Woodcock A (1999) Dust mite allergens are carried on not only large particles. Pediatr Allergy Immunol 10:258–260

    CAS  PubMed  Google Scholar 

  87. Tovey ER, Almqvist C, Li Q, Crisafulli D, Marks GB (2008) Nonlinear relationship of mite allergen exposure to mite sensitization and asthma in a birth cohort. J Allergy Clin Immunol 122:114–118 8 e1–5

    CAS  PubMed  Google Scholar 

  88. Lack G, Fox D, Northstone K, Golding J, Avon Longitudinal Study of P, Children Study T (2003) Factors associated with the development of peanut allergy in childhood. N Engl J Med 348:977–985

    PubMed  Google Scholar 

  89. Commins SP, James HR, Kelly LA, Pochan SL, Workman LJ, Perzanowski MS, Kocan KM, Fahy JV, Nganga LW, Ronmark E, Cooper PJ, Platts-Mills TAE (2011) The relevance of tick bites to the production of IgE antibodies to the mammalian oligosaccharide galactose-alpha-1,3-galactose. J Allergy Clin Immunol 127:1286–93 e6

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Spergel JM, Mizoguchi E, Brewer JP, Martin TR, Bhan AK, Geha RS (1998) Epicutaneous sensitization with protein antigen induces localized allergic dermatitis and hyperresponsiveness to methacholine after single exposure to aerosolized antigen in mice. J Clin Invest 101:1614–1622

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Tulic MK, Vivinus-Nebot M, Rekima A et al (2016) Presence of commensal house dust mite allergen in human gastrointestinal tract: a potential contributor to intestinal barrier dysfunction. Gut 65:757–766

    CAS  PubMed  Google Scholar 

  92. Macchiaverni P, Rekima A, Turfkruyer M, Mascarell L, Airouche S, Moingeon P, Adel-Patient K, Condino-Neto A, Annesi-Maesano I, Prescott SL, Tulic MK, Verhasselt V (2014) Respiratory allergen from house dust mite is present in human milk and primes for allergic sensitization in a mouse model of asthma. Allergy 69:395–398

    CAS  PubMed  Google Scholar 

  93. Baiz N, Macchiaverni P, Tulic MK et al (2017) Early oral exposure to house dust mite allergen through breast milk: a potential risk factor for allergic sensitization and respiratory allergies in children. J Allergy Clin Immunol 139:369–72 e10

    CAS  PubMed  Google Scholar 

  94. Brandt EB, Scribner TA, Akei HS, Rothenberg ME (2006) Experimental gastrointestinal allergy enhances pulmonary responses to specific and unrelated allergens. J Allergy Clin Immunol 118:420–427

    CAS  PubMed  Google Scholar 

  95. Avershina E, Ravi A, Storro O, Oien T, Johnsen R, Rudi K (2015) Potential association of vacuum cleaning frequency with an altered gut microbiota in pregnant women and their 2-year-old children. Microbiome 3:65

    PubMed  PubMed Central  Google Scholar 

  96. Bordas-Le Floch V, Le Mignon M, Bussieres L et al (2017) A combined transcriptome and proteome analysis extends the allergome of house dust mite Dermatophagoides species. PLoS One 12:e0185830

    PubMed  PubMed Central  Google Scholar 

  97. Reithofer M, Jahn-Schmid B (2017) Allergens with protease activity from house dust mites. Int J Mol Sci 18:E1368

    PubMed  Google Scholar 

  98. Trompette A, Divanovic S, Visintin A, Blanchard C, Hegde RS, Madan R, Thorne PS, Wills-Karp M, Gioannini TL, Weiss JP, Karp CL (2009) Allergenicity resulting from functional mimicry of a Toll-like receptor complex protein. Nature 457:585–588

    CAS  PubMed  Google Scholar 

  99. Reese G, Ayuso R, Lehrer SB (1999) Tropomyosin: an invertebrate pan-allergen. Int Arch Allergy Immunol 119:247–258

    CAS  PubMed  Google Scholar 

  100. Wong L, Huang CH, Lee BW (2016) Shellfish and house dust mite allergies: is the link tropomyosin? Allergy, Asthma Immunol Res 8:101–106

    CAS  Google Scholar 

  101. Banerjee S, Resch Y, Chen KW, Swoboda I, Focke-Tejkl M, Blatt K, Novak N, Wickman M, van Hage M, Ferrara R, Mari A, Purohit A, Pauli G, Sibanda EN, Ndlovu P, Thomas WR, Krzyzanek V, Tacke S, Malkus U, Valent P, Valenta R, Vrtala S (2015) Der p 11 is a major allergen for house dust mite-allergic patients suffering from atopic dermatitis. J Investig Dermatol 135:102–109

    CAS  PubMed  Google Scholar 

  102. Fernandez-Caldas E (2013) On mite allergy in dogs and humans. Int Arch Allergy Immunol 160:329–330

    PubMed  Google Scholar 

  103. Weghofer M, Grote M, Resch Y, Casset A, Kneidinger M, Kopec J, Thomas WR, Fernandez-Caldas E, Kabesch M, Ferrara R, Mari A, Purohit A, Pauli G, Horak F, Keller W, Valent P, Valenta R, Vrtala S (2013) Identification of Der p 23, a peritrophin-like protein, as a new major Dermatophagoides pteronyssinus allergen associated with the peritrophic matrix of mite fecal pellets. J Immunol 190:3059–3067

    CAS  PubMed  Google Scholar 

  104. Mueller GA, Randall TA, Glesner J, Pedersen LC, Perera L, Edwards LL, DeRose EF, Chapman MD, London RE, Pomés A (2016) Serological, genomic and structural analyses of the major mite allergen Der p 23. Clin Exp Allergy 46:365–376

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Chan TF, Ji KM, Yim AK et al (2015) The draft genome, transcriptome, and microbiome of Dermatophagoides farinae reveal a broad spectrum of dust mite allergens. J Allergy Clin Immunol 135:539–548

    CAS  PubMed  Google Scholar 

  106. Papazian D, Hansen S, Wurtzen PA (2015) Airway responses towards allergens—from the airway epithelium to T cells. Clin Exp Allergy 45:1268–1287

    CAS  PubMed  Google Scholar 

  107. Gunawan H, Takai T, Ikeda S, Okumura K, Ogawa H (2008) Protease activity of allergenic pollen of cedar, cypress, juniper, birch and ragweed. Allergol Int 57:83–91

    CAS  PubMed  Google Scholar 

  108. Yike I (2011) Fungal proteases and their pathophysiological effects. Mycopathologia 171:299–323

    CAS  PubMed  Google Scholar 

  109. Wan H, Winton HL, Soeller C, Tovey ER, Gruenert DC, Thompson PJ, Stewart GA, Taylor GW, Garrod DR, Cannell MB, Robinson C (1999) Der p 1 facilitates transepithelial allergen delivery by disruption of tight junctions. J Clin Invest 104:123–133

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Chapman MD, Wunschmann S, Pomes A (2007) Proteases as Th2 adjuvants. Curr Allergy Asthma Rep 7:363–367

    CAS  PubMed  Google Scholar 

  111. Nakamura T, Hirasawa Y, Takai T, Mitsuishi K, Okuda M, Kato T, Okumura K, Ikeda S, Ogawa H (2006) Reduction of skin barrier function by proteolytic activity of a recombinant house dust mite major allergen Der f 1. J Investig Dermatol 126:2719–2723

    CAS  PubMed  Google Scholar 

  112. Steinhoff M, Neisius U, Ikoma A, Fartasch M, Heyer G, Skov PS, Luger TA, Schmelz M (2003) Proteinase-activated receptor-2 mediates itch: a novel pathway for pruritus in human skin. J Neurosci 23:6176–6180

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Kato T, Takai T, Fujimura T, Matsuoka H, Ogawa T, Murayama K, Ishii A, Ikeda S, Okumura K, Ogawa H (2009) Mite serine protease activates protease-activated receptor-2 and induces cytokine release in human keratinocytes. Allergy 64:1366–1374

    CAS  PubMed  Google Scholar 

  114. Jeong SK, Kim HJ, Youm JK, Ahn SK, Choi EH, Sohn MH, Kim KE, Hong JH, Shin DM, Lee SH (2008) Mite and cockroach allergens activate protease-activated receptor 2 and delay epidermal permeability barrier recovery. J Investig Dermatol 128:1930–1939

    CAS  PubMed  Google Scholar 

  115. Grunstein MM, Veler H, Shan X, Larson J, Grunstein JS, Chuang S (2005) Proasthmatic effects and mechanisms of action of the dust mite allergen, Der p 1, in airway smooth muscle. J Allergy Clin Immunol 116:94–101

    CAS  PubMed  Google Scholar 

  116. Trian T, Allard B, Dupin I, Carvalho G, Ousova O, Maurat E, Bataille J, Thumerel M, Begueret H, Girodet PO, Marthan R, Berger P (2015) House dust mites induce proliferation of severe asthmatic smooth muscle cells via an epithelium-dependent pathway. Am J Respir Crit Care Med 191:538–546

    CAS  PubMed  Google Scholar 

  117. Aubier M, Thabut G, Hamidi F, Guillou N, Brard J, Dombret MC, Borensztajn K, Aitilalne B, Poirier I, Roland-Nicaise P, Taillé C, Pretolani M (2016) Airway smooth muscle enlargement is associated with protease-activated receptor 2/ligand overexpression in patients with difficult-to-control severe asthma. J Allergy Clin Immunol 138:729–39 e11

    CAS  PubMed  Google Scholar 

  118. Pfeffer PE, Corrigan CJ (2017) An imbalance between proteases and endogenous protease inhibitors in eosinophilic airway disease. Am J Respir Crit Care Med 195:707–708

    PubMed  Google Scholar 

  119. Schulz O, Sewell HF, Shakib F (1998) Proteolytic cleavage of CD25, the alpha subunit of the human T cell interleukin 2 receptor, by Der p 1, a major mite allergen with cysteine protease activity. J Exp Med 187:271–275

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Hewitt CR, Brown AP, Hart BJ, Pritchard DI (1995) A major house dust mite allergen disrupts the immunoglobulin E network by selectively cleaving CD23: innate protection by antiproteases. J Exp Med 182:1537–1544

    CAS  PubMed  Google Scholar 

  121. Shakib F, Ghaemmaghami AM, Sewell HF (2008) The molecular basis of allergenicity. Trends Immunol 29:633–642

    CAS  PubMed  Google Scholar 

  122. Wills-Karp M, Nathan A, Page K, Karp CL (2010) New insights into innate immune mechanisms underlying allergenicity. Mucosal Immunol 3:104–110

    CAS  PubMed  Google Scholar 

  123. Lee CG (2009) Chitin, chitinases and chitinase-like proteins in allergic inflammation and tissue remodeling. Yonsei Med J 50:22–30

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Kim LK, Morita R, Kobayashi Y, Eisenbarth SC, Lee CG, Elias J, Eynon EE, Flavell RA (2015) AMCase is a crucial regulator of type 2 immune responses to inhaled house dust mites. Proc Natl Acad Sci U S A 112:E2891–E2899

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Chupp GL, Lee CG, Jarjour N, Shim YM, Holm CT, He S, Dziura JD, Reed J, Coyle AJ, Kiener P, Cullen M, Grandsaigne M, Dombret MC, Aubier M, Pretolani M, Elias JA (2007) A chitinase-like protein in the lung and circulation of patients with severe asthma. N Engl J Med 357:2016–2027

    CAS  PubMed  Google Scholar 

  126. Van Dyken SJ, Garcia D, Porter P et al (2011) Fungal chitin from asthma-associated home environments induces eosinophilic lung infiltration. J Immunol 187:2261–2267

    PubMed  Google Scholar 

  127. Van Dyken SJ, Liang HE, Naikawadi RP et al (2017) Spontaneous chitin accumulation in airways and age-related fibrotic lung disease. Cell 169:497–509 e13

    PubMed  PubMed Central  Google Scholar 

  128. Lee CG, Dela Cruz CS, Herzog E, Rosenberg SM, Ahangari F, Elias JA (2012) YKL-40, a chitinase-like protein at the intersection of inflammation and remodeling. Am J Respir Crit Care Med 185:692–694

    CAS  PubMed  Google Scholar 

  129. El Kebir D, Jozsef L, Pan W, Wang L, Filep JG (2009) Bacterial DNA activates endothelial cells and promotes neutrophil adherence through TLR9 signaling. J Immunol 182:4386–4394

    PubMed  Google Scholar 

  130. Hammad H, Chieppa M, Perros F, Willart MA, Germain RN, Lambrecht BN (2009) House dust mite allergen induces asthma via Toll-like receptor 4 triggering of airway structural cells. Nat Med 15:410–416

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Bufe B, Schumann T, Kappl R, Bogeski I, Kummerow C, Podgórska M, Smola S, Hoth M, Zufall F (2015) Recognition of bacterial signal peptides by mammalian formyl peptide receptors: a new mechanism for sensing pathogens. J Biol Chem 290:7369–7387

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Svensson L, Redvall E, Bjorn C et al (2007) House dust mite allergen activates human eosinophils via formyl peptide receptor and formyl peptide receptor-like 1. Eur J Immunol 37:1966–1977

    CAS  PubMed  Google Scholar 

  133. Dzoro S, Mittermann I, Resch-Marat Y, Vrtala S, Nehr M, Hirschl AM, Wikberg G, Lundeberg L, Johansson C, Scheynius A, Valenta R (2018) House dust mites as potential carriers for IgE sensitization to bacterial antigens. Allergy 73:115–124

    CAS  PubMed  Google Scholar 

  134. Gough L, Sewell HF, Shakib F (2001) The proteolytic activity of the major dust mite allergen Der p 1 enhances the IgE antibody response to a bystander antigen. Clin Exp Allergy 31:1594–1598

    CAS  PubMed  Google Scholar 

  135. Fattouh R, Pouladi MA, Alvarez D, Johnson JR, Walker TD, Goncharova S, Inman MD, Jordana M (2005) House dust mite facilitates ovalbumin-specific allergic sensitization and airway inflammation. Am J Respir Crit Care Med 172:314–321

    PubMed  Google Scholar 

  136. Choi JP, Lee SM, Choi HI, Kim MH, Jeon SG, Jang MH, Jee YK, Yang S, Cho YJ, Kim YK (2016) House dust mite-derived chitin enhances Th2 cell response to inhaled allergens, mainly via a TNF-alpha-dependent pathway. Allergy, Asthma Immunol Res 8:362–374

    CAS  Google Scholar 

  137. Mattila P, Joenvaara S, Renkonen J, Toppila-Salmi S, Renkonen R (2011) Allergy as an epithelial barrier disease. Clin Transl Allergy 1:5

    PubMed  PubMed Central  Google Scholar 

  138. Hammad H, Smits HH, Ratajczak C, Nithiananthan A, Wierenga EA, Stewart GA, Jacquet A, Tonnel AB, Pestel J (2003) Monocyte-derived dendritic cells exposed to Der p 1 allergen enhance the recruitment of Th2 cells: major involvement of the chemokines TARC/CCL17 and MDC/CCL22. Eur Cytokine Netw 14:219–228

    CAS  PubMed  Google Scholar 

  139. Ghaemmaghami AM, Gough L, Sewell HF, Shakib F (2002) The proteolytic activity of the major dust mite allergen Der p 1 conditions dendritic cells to produce less interleukin-12: allergen-induced Th2 bias determined at the dendritic cell level. Clin Exp Allergy 32:1468–1475

    CAS  PubMed  Google Scholar 

  140. Willumsen N, Holm J, Christensen LH, Wurtzen PA, Lund K (2012) The complexity of allergic patients’ IgE repertoire correlates with serum concentration of allergen-specific IgE. Clin Exp Allergy 42:1227–1236

    CAS  PubMed  Google Scholar 

  141. Galli SJ, Tsai M (2012) IgE and mast cells in allergic disease. Nat Med 18:693–704

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Platts-Mills TA, Tovey ER, Mitchell EB, Moszoro H, Nock P, Wilkins SR (1982) Reduction of bronchial hyperreactivity during prolonged allergen avoidance. Lancet 2:675–678

    CAS  PubMed  Google Scholar 

  143. Chan-Yeung M, Manfreda J, Dimich-Ward H, Lam J, Ferguson A, Warren P, Simons E, Broder I, Chapman M, Platts-Mills T (1995) Mite and cat allergen levels in homes and severity of asthma. Am J Respir Crit Care Med 152:1805–1811

    CAS  PubMed  Google Scholar 

  144. Custovic A, Taggart SC, Francis HC, Chapman MD, Woodcock A (1996) Exposure to house dust mite allergens and the clinical activity of asthma. J Allergy Clin Immunol 98:64–72

    CAS  PubMed  Google Scholar 

  145. van der Heide S, De Monchy JG, De Vries K, Dubois AE, Kauffman HF (1997) Seasonal differences in airway hyperresponsiveness in asthmatic patients: relationship with allergen exposure and sensitization to house dust mites. Clin Exp Allergy 27:627–633

    PubMed  Google Scholar 

  146. Tunnicliffe WS, Fletcher TJ, Hammond K, Roberts K, Custovic A, Simpson A, Woodcock A, Ayres JG (1999) Sensitivity and exposure to indoor allergens in adults with differing asthma severity. Eur Respir J 13:654–659

    CAS  PubMed  Google Scholar 

  147. Langley SJ, Goldthorpe S, Craven M, Morris J, Woodcock A, Custovic A (2003) Exposure and sensitization to indoor allergens: association with lung function, bronchial reactivity, and exhaled nitric oxide measures in asthma. J Allergy Clin Immunol 112:362–368

    CAS  PubMed  Google Scholar 

  148. Sporik R, Platts-Mills TA, Cogswell JJ (1993) Exposure to house dust mite allergen of children admitted to hospital with asthma. Clin Exp Allergy 23:740–746

    CAS  PubMed  Google Scholar 

  149. Soto-Quiros M, Avila L, Platts-Mills TA et al (2012) High titers of IgE antibody to dust mite allergen and risk for wheezing among asthmatic children infected with rhinovirus. J Allergy Clin Immunol 129:1499–1505 e5

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Green RM, Custovic A, Sanderson G, Hunter J, Johnston SL, Woodcock A (2002) Synergism between allergens and viruses and risk of hospital admission with asthma: case-control study. BMJ 324:763

    PubMed  PubMed Central  Google Scholar 

  151. Murray CS, Poletti G, Kebadze T, Morris J, Woodcock A, Johnston SL, Custovic A (2006) Study of modifiable risk factors for asthma exacerbations: virus infection and allergen exposure increase the risk of asthma hospital admissions in children. Thorax 61:376–382

    CAS  PubMed  Google Scholar 

  152. Bennett WD, Herbst M, Alexis NE, Zeman KL, Wu J, Hernandez ML, Peden DB (2011) Effect of inhaled dust mite allergen on regional particle deposition and mucociliary clearance in allergic asthmatics. Clin Exp Allergy 41:1719–1728

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Milanese M, Peroni D, Costella S, Aralla R, Loiacono A, Barp C, Boner A, Brusasco V (2004) Improved bronchodilator effect of deep inhalation after allergen avoidance in asthmatic children. J Allergy Clin Immunol 114:505–511

    PubMed  Google Scholar 

  154. Langley SJ, Goldthorpe S, Craven M, Woodcock A, Custovic A (2005) Relationship between exposure to domestic allergens and bronchial hyperresponsiveness in non-sensitised, atopic asthmatic subjects. Thorax 60:17–21

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Mouthuy J, Detry B, Sohy C, Pirson F, Pilette C (2011) Presence in sputum of functional dust mite-specific IgE antibodies in intrinsic asthma. Am J Respir Crit Care Med 184:206–214

    CAS  PubMed  Google Scholar 

  156. Dick S, Friend A, Dynes K, AlKandari F, Doust E, Cowie H, Ayres JG, Turner SW (2014) A systematic review of associations between environmental exposures and development of asthma in children aged up to 9 years. BMJ Open 4:e006554

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Sporik R, Holgate ST, Platts-Mills TA, Cogswell JJ (1990) Exposure to house-dust mite allergen (Der p I) and the development of asthma in childhood. A prospective study. N Engl J Med 323:502–507

    CAS  PubMed  Google Scholar 

  158. Peat JK, Tovey E, Toelle BG, Haby MM, Gray EJ, Mahmic A, Woolcock AJ (1996) House dust mite allergens. A major risk factor for childhood asthma in Australia. Am J Respir Crit Care Med 153:141–146

    CAS  PubMed  Google Scholar 

  159. Celedon JC, Milton DK, Ramsey CD et al (2007) Exposure to dust mite allergen and endotoxin in early life and asthma and atopy in childhood. J Allergy Clin Immunol 120:144–149

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Carter PM, Peterson EL, Ownby DR, Zoratti EM, Johnson CC (2003) Relationship of house-dust mite allergen exposure in children's bedrooms in infancy to bronchial hyperresponsiveness and asthma diagnosis by age 6 to 7. Ann Allergy Asthma Immunol 90:41–44

    PubMed  Google Scholar 

  161. Cole Johnson C, Ownby DR, Havstad SL, Peterson EL (2004) Family history, dust mite exposure in early childhood, and risk for pediatric atopy and asthma. J Allergy Clin Immunol 114:105–110

    PubMed  Google Scholar 

  162. Brussee JE, Smit HA, van Strien RT, Corver K, Kerkhof M, Wijga AH, Aalberse RC, Postma D, Gerritsen J, Grobbee DE, de Jongste JC, Brunekreef B (2005) Allergen exposure in infancy and the development of sensitization, wheeze, and asthma at 4 years. J Allergy Clin Immunol 115:946–952

    PubMed  Google Scholar 

  163. Polk S, Sunyer J, Munoz-Ortiz L et al (2004) A prospective study of Fel d1 and Der p1 exposure in infancy and childhood wheezing. Am J Respir Crit Care Med 170:273–278

    PubMed  Google Scholar 

  164. Cullinan P, MacNeill SJ, Harris JM, Moffat S, White C, Mills P, Newman Taylor AJ (2004) Early allergen exposure, skin prick responses, and atopic wheeze at age 5 in English children: a cohort study. Thorax 59:855–861

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Richgels PK, Yamani A, Chougnet CA, Lewkowich IP (2017) Maternal house dust mite exposure during pregnancy enhances severity of house dust mite-induced asthma in murine offspring. J Allergy Clin Immunol 140:1404–1415.e9

    PubMed  PubMed Central  Google Scholar 

  166. Squillace SP, Sporik RB, Rakes G et al (1997) Sensitization to dust mites as a dominant risk factor for asthma among adolescents living in Central Virginia. Multiple regression analysis of a population-based study. Am J Respir Crit Care Med 156:1760–1764

    CAS  PubMed  Google Scholar 

  167. Simpson BM, Custovic A, Simpson A, Hallam CL, Walsh D, Marolia H, Campbell J, Woodcock A (2001) NAC Manchester Asthma and Allergy Study (NACMAAS): risk factors for asthma and allergic disorders in adults. Clin Exp Allergy 31:391–399

    CAS  PubMed  Google Scholar 

  168. Simpson A, Soderstrom L, Ahlstedt S, Murray CS, Woodcock A, Custovic A (2005) IgE antibody quantification and the probability of wheeze in preschool children. J Allergy Clin Immunol 116:744–749

    CAS  PubMed  Google Scholar 

  169. Illi S, von Mutius E, Lau S, Niggemann B, Grüber C, Wahn U (2006) Perennial allergen sensitisation early in life and chronic asthma in children: a birth cohort study. Lancet 368:763–770

    PubMed  Google Scholar 

  170. Lodge CJ, Lowe AJ, Gurrin LC, Hill DJ, Hosking CS, Khalafzai RU, Hopper JL, Matheson MC, Abramson MJ, Allen KJ, Dharmage SC (2011) House dust mite sensitization in toddlers predicts current wheeze at age 12 years. J Allergy Clin Immunol 128:782–8 e9

    PubMed  Google Scholar 

  171. Llanora GV, Ming LJ, Wei LM, van Bever HP (2012) House dust mite sensitization in toddlers predict persistent wheeze in children between eight to fourteen years old. Asia Pac Allergy 2:181–186

    PubMed  PubMed Central  Google Scholar 

  172. Chusakul S, Phannaso C, Sangsarsri S, Aeumjaturapat S, Snidvongs K (2010) House-dust mite nasal provocation: a diagnostic tool in perennial rhinitis. Am J Rhinol Allergy 24:133–136

    PubMed  Google Scholar 

  173. Rolla G, Guida G, Heffler E, Badiu I, Bommarito L, de Stefani A, Usai A, Cosseddu D, Nebiolo F, Bucca C (2007) Diagnostic classification of persistent rhinitis and its relationship to exhaled nitric oxide and asthma: a clinical study of a consecutive series of patients. Chest 131:1345–1352

    CAS  PubMed  Google Scholar 

  174. Terreehorst I, Oosting AJ, Tempels-Pavlica Z, de Monchy JGR, Bruijnzeel-Koomen CAFM, Hak E, van Wijk RG (2002) Prevalence and severity of allergic rhinitis in house dust mite-allergic patients with bronchial asthma or atopic dermatitis. Clin Exp Allergy 32:1160–1165

    CAS  PubMed  Google Scholar 

  175. Bergmann KC, Demoly P, Worm M, Fokkens WJ, Carrillo T, Tabar AI, Nguyen H, Montagut A, Zeldin RK (2014) Efficacy and safety of sublingual tablets of house dust mite allergen extracts in adults with allergic rhinitis. J Allergy Clin Immunol 133:1608–14 e6

    CAS  PubMed  Google Scholar 

  176. Roux M, Devillier P, Yang WH, Montagut A, Abiteboul K, Viatte A, Zeldin RK (2016) Efficacy and safety of sublingual tablets of house dust mite allergen extracts: results of a dose-ranging study in an environmental exposure chamber. J Allergy Clin Immunol 138:451–458.e5

    CAS  PubMed  Google Scholar 

  177. Ryu JH, Yoo JY, Kim MJ, Hwang SG, Ahn KC, Ryu JC, Choi MK, Joo JH, Kim CH, Lee SN, Lee WJ, Kim J, Shin DM, Kweon MN, Bae YS, Yoon JH (2013) Distinct TLR-mediated pathways regulate house dust mite-induced allergic disease in the upper and lower airways. J Allergy Clin Immunol 131:549–561

    CAS  PubMed  Google Scholar 

  178. Klossek JM, Annesi-Maesano I, Pribil C, Didier A (2012) The burden associated with ocular symptoms in allergic rhinitis. Int Arch Allergy Immunol 158:411–417

    CAS  PubMed  Google Scholar 

  179. Ciprandi G, Buscaglia S, Pesce G, Pronzato C, Ricca V, Parmiani S, Bagnasco M, Canonica GW (1995) Minimal persistent inflammation is present at mucosal level in patients with asymptomatic rhinitis and mite allergy. J Allergy Clin Immunol 96:971–979

    CAS  PubMed  Google Scholar 

  180. Mumcuoglu YK, Zavaro A, Samra Z, Lazarowitz Z (1988) House dust mites and vernal keratoconjunctivitis. Ophthalmologica 196:175–181

    CAS  PubMed  Google Scholar 

  181. Beck HI, Korsgaard J (1989) Atopic dermatitis and house dust mites. Br J Dermatol 120:245–251

    CAS  PubMed  Google Scholar 

  182. Ring J, Darsow U, Gfesser M, Vieluf D (1997) The ‘atopy patch test’ in evaluating the role of aeroallergens in atopic eczema. Int Arch Allergy Immunol 113:379–383

    CAS  PubMed  Google Scholar 

  183. Scalabrin DM, Bavbek S, Perzanowski MS, Wilson BB, Platts-Mills TA, Wheatley LM (1999) Use of specific IgE in assessing the relevance of fungal and dust mite allergens to atopic dermatitis: a comparison with asthmatic and nonasthmatic control subjects. J Allergy Clin Immunol 104:1273–1279

    CAS  PubMed  Google Scholar 

  184. Teplitsky V, Mumcuoglu KY, Babai I, Dalal I, Cohen R, Tanay A (2008) House dust mites on skin, clothes, and bedding of atopic dermatitis patients. Int J Dermatol 47:790–795

    PubMed  Google Scholar 

  185. Boralevi F, Hubiche T, Leaute-Labreze C et al (2008) Epicutaneous aeroallergen sensitization in atopic dermatitis infants—determining the role of epidermal barrier impairment. Allergy 63:205–210

    CAS  PubMed  Google Scholar 

  186. Arlian LG, Morgan MS (2011) Immunomodulation of skin cytokine secretion by house dust mite extracts. Int Arch Allergy Immunol 156:171–178

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Jang YH, Choi JK, Jin M, Choi YA, Ryoo ZY, Lee HS, Park PH, Kim SU, Kwon TK, Jang MH, Im SH, Moon SY, Lee WJ, Lee SJ, Kim DW, Kim SH (2017) House dust mite increases pro-Th2 cytokines IL-25 and IL-33 via the activation of TLR1/6 signaling. J Invest Dermatol 137:2354–2361

    CAS  PubMed  Google Scholar 

  188. Dai X, Sayama K, Tohyama M, Shirakata Y, Hanakawa Y, Tokumaru S, Yang L, Hirakawa S, Hashimoto K (2011) Mite allergen is a danger signal for the skin via activation of inflammasome in keratinocytes. J Allergy Clin Immunol 127:806–814.e4

    CAS  PubMed  Google Scholar 

  189. Koller B, Muller-Wiefel AS, Rupec R, Korting HC, Ruzicka T (2011) Chitin modulates innate immune responses of keratinocytes. PLoS One 6:e16594

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Landheer J, Giovannone B, Mattson JD, Tjabringa S, Bruijnzeel-Koomen CAFM, McClanahan T, de Waal Malefyt R, Knol E, Hijnen DJ (2013) Epicutaneous application of house dust mite induces thymic stromal lymphopoietin in nonlesional skin of patients with atopic dermatitis. J Allergy Clin Immunol 132:1252–1254

    CAS  PubMed  Google Scholar 

  191. van Ree R, Antonicelli L, Akkerdaas JH et al (1996) Asthma after consumption of snails in house-dust-mite-allergic patients: a case of IgE cross-reactivity. Allergy 51:387–393

    PubMed  Google Scholar 

  192. Sidenius KE, Hallas TE, Poulsen LK, Mosbech H (2001) Allergen cross-reactivity between house-dust mites and other invertebrates. Allergy 56:723–733

    CAS  PubMed  Google Scholar 

  193. Ayuso R, Reese G, Leong-Kee S, Plante M, Lehrer SB (2002) Molecular basis of arthropod cross-reactivity: IgE-binding cross-reactive epitopes of shrimp, house dust mite and cockroach tropomyosins. Int Arch Allergy Immunol 129:38–48

    CAS  PubMed  Google Scholar 

  194. Bessot JC, Metz-Favre C, Rame JM, De Blay F, Pauli G (2010) Tropomyosin or not tropomyosin, what is the relevant allergen in house dust mite and snail cross allergies? Eur Ann Allergy Clin Immunol 42:3–10

    CAS  PubMed  Google Scholar 

  195. Villalta D, Tonutti E, Visentini D, Bizzaro N, Roncarolo D, Amato S, Mistrello G (2010) Detection of a novel 20 kDa shrimp allergen showing cross-reactivity to house dust mites. Eur Ann Allergy Clin Immunol 42:20–24

    CAS  PubMed  Google Scholar 

  196. Gamez C, Zafra M, Boquete M et al (2014) New shrimp IgE-binding proteins involved in mite-seafood cross-reactivity. Mol Nutr Food Res 58:1915–1925

    CAS  PubMed  Google Scholar 

  197. Fernandes J, Reshef A, Patton L, Ayuso R, Reese G, Lehrer SB (2003) Immunoglobulin E antibody reactivity to the major shrimp allergen, tropomyosin, in unexposed orthodox Jews. Clin Exp Allergy 33:956–961

    CAS  PubMed  Google Scholar 

  198. Adalsteinsdottir B, Sigurdardottir ST, Gislason T, Kristensen B, Gislason D (2007) What characterizes house dust mite sensitive individuals in a house dust mite free community in Reykjavik, Iceland? Allergol Int 56:51–56

    PubMed  Google Scholar 

  199. Wang J, Calatroni A, Visness CM, Sampson HA (2011) Correlation of specific IgE to shrimp with cockroach and dust mite exposure and sensitization in an inner-city population. J Allergy Clin Immunol 128:834–837

    CAS  PubMed  PubMed Central  Google Scholar 

  200. van Ree R, Antonicelli L, Akkerdaas JH, Garritani MS, Aalberse RC, Bonifazi F (1996) Possible induction of food allergy during mite immunotherapy. Allergy 51:108–113

    PubMed  Google Scholar 

  201. Peroni DG, Piacentini GL, Bodini A, Boner AL (2000) Snail anaphylaxis during house dust mite immunotherapy. Pediatr Allergy Immunol 11:260–261

    CAS  PubMed  Google Scholar 

  202. Pajno GB, La Grutta S, Barberio G, Canonica GW, Passalacqua G (2002) Harmful effect of immunotherapy in children with combined snail and mite allergy. J Allergy Clin Immunol 109:627–629

    PubMed  Google Scholar 

  203. Cortellini G, Spadolini I, Santucci A, Cova V, Conti C, Corvetta A, Passalacqua G (2011) Improvement of shrimp allergy after sublingual immunotherapy for house dust mites: a case report. Eur Ann Allergy Clin Immunol 43:162–164

    CAS  PubMed  Google Scholar 

  204. Sokol WN, Wunschmann S, Agah S (2017) Grasshopper anaphylaxis in patients allergic to dust mite, cockroach, and crustaceans: Is tropomyosin the cause? Ann Allergy Asthma Immunol 119:91–92

    PubMed  Google Scholar 

  205. Erben AM, Rodriguez JL, McCullough J, Ownby DR (1993) Anaphylaxis after ingestion of beignets contaminated with Dermatophagoides farinae. J Allergy Clin Immunol 92:846–849

    CAS  PubMed  Google Scholar 

  206. Wen DC, Shyur SD, Ho CM, Chiang YC, Huang LH, Lin MT, Yang HC, Liang PH (2005) Systemic anaphylaxis after the ingestion of pancake contaminated with the storage mite Blomia freemani. Ann Allergy Asthma Immunol 95:612–614

    PubMed  Google Scholar 

  207. Blanco C, Quiralte J, Castillo R et al (1997) Anaphylaxis after ingestion of wheat flour contaminated with mites. J Allergy Clin Immunol 99:308–313

    CAS  PubMed  Google Scholar 

  208. Guerra Bernd LA, Arruda LK, Barros Antunes HB (2001) Oral anaphylaxis to mites. Allergy 56:83–84

    CAS  PubMed  Google Scholar 

  209. Posthumus J, Borish L (2012) A 71-year-old man with anaphylaxis after eating grits. Allergy Asthma Proc 33:110–113

    PubMed  Google Scholar 

  210. Sanchez-Borges M, Suarez Chacon R, Capriles-Hulett A, Caballero-Fonseca F, Fernandez-Caldas E (2013) Anaphylaxis from ingestion of mites: pancake anaphylaxis. J Allergy Clin Immunol 131:31–35

    PubMed  Google Scholar 

  211. Hannaway PJ, Miller JD (2008) The pancake syndrome (oral mite anaphylaxis) by ingestion and inhalation in a 52-year-old woman in the northeastern United States. Ann Allergy Asthma Immunol 100:397–398

    PubMed  Google Scholar 

  212. Cain G, Elderfield AJ, Green R, Smillie FI, Chapman MD, Custovic A, Woodcock A (1998) The effect of dry heat on mite, cat, and dog allergens. Allergy 53:1213–1215

    CAS  PubMed  Google Scholar 

  213. Sanchez-Borges M, Capriles-Hulett A, Caballero-Fonesca F (2006) Oral mite anaphylaxis (pancake syndrome) also observed in children. Ann Allergy Asthma Immunol 96:755–756

    PubMed  Google Scholar 

  214. Sanchez-Borges M, Capriles-Hulett A, Fernandez-Caldas E et al (1997) Mite-contaminated foods as a cause of anaphylaxis. J Allergy Clin Immunol 99:738–743

    CAS  PubMed  Google Scholar 

  215. Sanchez-Borges M, Iraola V, Fernandez-Caldas E, Capriles-Hulett A, Caballero-Fonseca F (2007) Dust mite ingestion-associated, exercise-induced anaphylaxis. J Allergy Clin Immunol 120:714–716

    PubMed  Google Scholar 

  216. Portnoy J, Miller JD, Williams PB, Chew GL, Miller JD, Zaitoun F, Phipatanakul W, Kennedy K, Barnes C, Grimes C, Larenas-Linnemann D, Sublett J, Bernstein D, Blessing-Moore J, Khan D, Lang D, Nicklas R, Oppenheimer J, Randolph C, Schuller D, Spector S, Tilles SA, Wallace D, Joint Taskforce on Practice Parameters, Practice Parameter Workgroup (2013) Environmental assessment and exposure control of dust mites: a practice parameter. Ann Allergy Asthma Immunol 111:465–507

    PubMed  PubMed Central  Google Scholar 

  217. Dust mites in pancake flour. 2018. Accessed 1/14/18, at https://youtu.be/goKCIOShO3w.

  218. Ramirez RM, Jacobs RL (2013) Eosinophilic esophagitis treated with immunotherapy to dust mites. J Allergy Clin Immunol 132:503–504

    PubMed  Google Scholar 

  219. Bene J, Ley D, Roboubi R, Gottrand F, Gautier S (2016) Eosinophilic esophagitis after desensitization to dust mites with sublingual immunotherapy. Ann Allergy Asthma Immunol 116:583–584

    PubMed  Google Scholar 

  220. Wildenberg ME, van den Brink GR (2016) House dust mite: a new player in intestinal inflammation? Gut 65:727–728

    CAS  PubMed  Google Scholar 

  221. Carnes J, Iraola V, Cho SH, Esch RE (2017) Mite allergen extracts and clinical practice. Ann Allergy Asthma Immunol 118:249–256

    CAS  PubMed  Google Scholar 

  222. Wilson JM, Platts-Mills TAE (2018) Home environmental interventions for house dust mite. J Allergy Clin Immunol Pract 6:1–7

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey D. Miller.

Ethics declarations

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of Interest

Dr. Miller is the owner and CEO of Mission: Allergy, Inc.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miller, J.D. The Role of Dust Mites in Allergy. Clinic Rev Allerg Immunol 57, 312–329 (2019). https://doi.org/10.1007/s12016-018-8693-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12016-018-8693-0

Keywords

Navigation