Skip to main content
Log in

Competing magnetic states in silicene and germanene 2D ferromagnets

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Two-dimension (2D) magnets have recently developed into a class of stoichiometric materials with prospective applications in ultra-compact spintronics and quantum computing. Their functionality is particularly rich when different magnetic orders are competing in the same material. Metalloxenes REX2 (RE = Eu, Gd; X = Si, Ge), silicene or germanene — heavy counterparts of graphene — coupled with a layer of rare-earth metals, evolve from three-dimension (3D) antiferromagnets in multilayer structures to 2D ferromagnets in a few monolayers. This evolution, however, does not lead to fully saturated 2D ferromagnetism, pointing at a possibility of coexisting/competing magnetic states. Here, REX2 magnetism is explored with element-selective X-ray magnetic circular dichroism (XMCD). The measurements are carried out for GdSi2, EuSi2, GdGe2, and EuGe2 of different thicknesses down to 1 monolayer employing K absorption edges of Si and Ge as well as M and L edges of the rare-earths. They access the magnetic state in REX2 and determine the seat of magnetism, orbital, and spin contributions to the magnetic moment. High-field measurements probe remnants of the bulk antiferromagnetism in 2D REX2. The results provide a new platform for studies of complex magnetic structures in 2D materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gong, C.; Li, L.; Li, Z. L.; Ji, H. W.; Stern, A.; Xia, Y.; Cao, T.; Bao, W.; Wang, C. Z.; Wang, Y. et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 2017, 546, 265–269.

    CAS  Google Scholar 

  2. Huang, B.; Clark, G.; Navarro-Moratalla, E.; Klein, D. R.; Cheng, R.; Seyler, K. L.; Zhong, D.; Schmidgall, E.; McGuire, M. A.; Cobden, D. H. et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 2017, 546, 270–273.

    CAS  Google Scholar 

  3. Burch, K. S.; Mandrus, D.; Park, J. G Magnetism in two-dimensional van der Waals materials. Nature 2018, 563, 47–52.

    CAS  Google Scholar 

  4. Gong, C.; Zhang, X. Two-dimensional magnetic crystals and emergent heterostructure devices. Science 2019, 363, eaav4450.

    CAS  Google Scholar 

  5. Gibertini, M.; Koperski, M.; Morpurgo, A. F.; Novoselov, K. S. Magnetic 2D materials and heterostructures. Nat. Nanotechnol. 2019, 14, 408–419.

    CAS  Google Scholar 

  6. Bonilla, M.; Kolekar, S.; Ma, Y. J.; Diaz, H. C.; Kalappattil, V.; Das, R.; Eggers, T.; Gutierrez, H. R.; Phan, M. H.; Batzill, M. Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates. Nat. Nanotechnol. 2018, 13, 289–293.

    CAS  Google Scholar 

  7. Nakano, M.; Wang, Y.; Yoshida, S.; Matsuoka, H.; Majima, Y.; Ikeda, K.; Hirata, Y; Takeda, Y.; Wadati, H.; Kohama, Y. et al. Intrinsic 2D ferromagnetism in V5Se8 epitaxial thin films. Nano Lett. 2019, 19, 8806–8810.

    CAS  Google Scholar 

  8. O’Hara, D. J.; Zhu, T. C.; Trout, A. H.; Ahmed, A. S.; Luo, Y. K.; Lee, C. H.; Brenner, M. R.; Rajan, S.; Gupta, J. A.; McComb, D. W. et al. Room temperature intrinsic ferromagnetism in epitaxial manganese selenide films in the monolayer limit. Nano Lett. 2018, 18, 3125–3131.

    Google Scholar 

  9. Balan, A. P.; Radhakrishnan, S.; Woellner, C. F.; Sinha, S. K.; Deng, L. Z.; de los Reyes, C.; Rao, B. M.; Paulose, M.; Neupane, R.; Apte, A. et al. Exfoliation of a non-van der Waals material from iron ore hematite. Nat. Nanotechnol. 2018, 13, 602–609.

    Google Scholar 

  10. Deng, Y. J.; Yu, Y. J.; Song, Y. C.; Zhang, J. Z.; Wang, N. Z.; Sun, Z. Y.; Yi, Y. F.; Wu, Y. Z.; Wu, S. W.; Zhu, J. Y. et al. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature 2018, 563, 94–99.

    CAS  Google Scholar 

  11. Tokmachev, A. M.; Averyanov, D. V.; Parfenov, O. E.; Taldenkov, A. N.; Karateev, I. A.; Sokolov, I. S.; Kondratev, O. A.; Storchak, V. G. Emerging two-dimensional ferromagnetism in silicene materials. Nat. Commun. 2018, 9, 1672.

    Google Scholar 

  12. Tokmachev, A. M.; Averyanov, D. V.; Taldenkov, A. N.; Parfenov, O. E.; Karateev, I. A.; Sokolov, I. S.; Storchak, V. G. Lanthanide f7 metalloxenes—A class of intrinsic 2D ferromagnets. Mater. Horiz. 2019, 6, 1488–1496.

    CAS  Google Scholar 

  13. Sun, Z. Y.; Yi, Y. F.; Song, T. C.; Clark, G.; Huang, B.; Shan, Y. W.; Wu, S.; Huang, D.; Gao, C. L.; Chen, Z. H. et al. Giant nonreciprocal second-harmonic generation from antiferromagnetic bilayer CrI3. Nature 2019, 572, 497–501.

    CAS  Google Scholar 

  14. Thiel, L.; Wang, Z.; Tschudin, M. A.; Rohner, D.; Gutiérrez-Lezama, I.; Ubrig, N.; Gibertini, M.; Giannini, E.; Morpurgo, A. F.; Maletinsky, P. Probing magnetism in 2D materials at the nanoscale with single-spin microscopy. Science 2019, 364, 973–976.

    CAS  Google Scholar 

  15. Niu, B.; Su, T.; Francisco, B. A.; Ghosh, S.; Kargar, F.; Huang, X.; Lohmann, M.; Li, J. X.; Xu, Y. D.; Taniguchi, T. et al. Coexistence of magnetic orders in two-dimensional magnet CrI3. Nano Lett. 2020, 20, 553–558.

    CAS  Google Scholar 

  16. Huang, B.; Clark, G; Klein, D. R.; MacNeill, D.; Navarro-Moratalla, E.; Seyler, K. L.; Wilson, N.; McGuire, M. A.; Cobden, D. H.; Xiao, D. et al. Electrical control of 2D magnetism in bilayer CrI3. Nat. Nanotechnol. 2018, 13, 544–548.

    CAS  Google Scholar 

  17. Jiang, S. W.; Li, L. Z.; Wang, Z. F.; Mak, K. F.; Shan, J. Controlling magnetism in 2D CrI3 by electrostatic doping. Nat. Nanotechnol. 2018, 13, 549–553.

    CAS  Google Scholar 

  18. Song, T. C.; Fei, Z. Y.; Yankowitz, M.; Lin, Z.; Jiang, Q. N.; Hwangbo, K.; Zhang, Q.; Sun, B. S.; Taniguchi, T.; Watanabe, K. et al. Switching 2D magnetic states via pressure tuning of layer stacking. Nat. Mater. 2019, 18, 1298–1302.

    CAS  Google Scholar 

  19. Klein, D. R.; MacNeill, D.; Lado, J. L.; Soriano, D.; Navarro-Moratalla, E.; Watanabe, K.; Taniguchi, T.; Manni, S.; Canfield, P.; Fernández-Rossier, J. et al. Probing magnetism in 2D van der Waals crystalline insulators via electron tunneling. Science 2018, 360, 1218–1222.

    CAS  Google Scholar 

  20. Molle, A.; Goldberger, J.; Houssa, M.; Xu, Y.; Zhang, S. C.; Akinwande, D. Buckled two-dimensional Xene sheets. Nat. Mater. 2017, 16, 163–169.

    CAS  Google Scholar 

  21. Mannix, A. J.; Kiraly, B.; Hersam, M. C.; Guisinger, N. P. Synthesis and chemistry of elemental 2D materials. Nat. Rev. Chem. 2017, 1, 0014.

    CAS  Google Scholar 

  22. Tao, L.; Cinquanta, E.; Chiappe, D.; Grazianetti, C.; Fanciulli, M.; Dubey, M.; Molle, A.; Akinwande, D. Silicene field-effect transistors operating at room temperature. Nat. Nanotechnol. 2015, 10, 227–231.

    CAS  Google Scholar 

  23. Wang, Y. Y.; Zheng, J. X.; Ni, Z. Y.; Fei, R. X.; Liu, Q. H.; Quhe, R.; Xu, C. Y.; Zhou, J.; Gao, Z. X.; Lu, J. Half-metallic silicene and germanene nanoribbons: Towards high-performance spintronics device. Nano 2012, 7, 1250037.

    Google Scholar 

  24. Zhao, J. J.; Liu, H. S.; Yu, Z. M.; Quhe, R.; Zhou, S.; Wang, Y. Y.; Liu, C. C.; Zhong, H. X.; Han, N. N.; Lu, J. et al. Rise of silicene: A competitive 2D material. Prog. Mater. Sci. 2016, 83, 24–151.

    CAS  Google Scholar 

  25. Tokmachev, A. M.; Averyanov, D. V.; Karateev, I. A.; Parfenov, O. E.; Kondratev, O. A.; Taldenkov, A. N.; Storchak, V. G. Engineering of magnetically intercalated silicene compound: An overlooked polymorph of EuSi2. Adv. Funct. Mater. 2017, 27, 1606603.

    Google Scholar 

  26. Parfenov, O. E.; Averyanov, D. V.; Tokmachev, A. M.; Sokolov, I. S.; Karateev, I. A.; Taldenkov, A. N.; Storchak, V. G. High-mobility carriers in germanene derivatives. Adv. Funct. Mater. 2020, 30, 1910643.

    CAS  Google Scholar 

  27. Parfenov, O. E.; Tokmachev, A. M.; Averyanov, D. V.; Karateev, I. A.; Sokolov, I. S.; Taldenkov, A. N.; Storchak, V. G. Layer-controlled laws of electron transport in two-dimensional ferromagnets. Mater. Today 2019, 29, 20–25.

    CAS  Google Scholar 

  28. Zhai, X. C.; Wen, R.; Zhou, X. F.; Chen, W.; Yan, W.; Gong, L. Y.; Pu, Y.; Li, X. A. Valley-mediated and electrically switched bipolarunipolar transition of the spin-diode effect in heavy group-IV monolayers. Phys. Rev. Appl. 2019, 11, 064047.

    CAS  Google Scholar 

  29. Feng, J. G.; Biswas, D.; Rajan, A.; Watson, M. D.; Mazzola, F.; Clark, O. J.; Underwood, K.; Markovic, I.; McLaren, M.; Hunter, A. et al. Electronic structure and enhanced charge-density wave order of monolayer VSe2. Nano Lett. 2018, 18, 4493–4499.

    CAS  Google Scholar 

  30. Wong, P. K. J.; Zhang, W.; Bussolotti, F.; Yin, X. M.; Herng, T. S.; Zhang, L.; Huang, Y. L.; Vinai, G.; Krishnamurthi, S.; Bukhvalov, D. W. et al. Evidence of spin frustration in a vanadium diselenide monolayer magnet. Adv. Mater. 2019, 31, 1901185.

    Google Scholar 

  31. Averyanov, D. V.; Sadofyev, Y. G.; Tokmachev, A. M.; Primenko, A. E.; Likhachev, I. A.; Storchak, V. G. Direct epitaxial integration of the ferromagnetic semiconductor EuO with silicon for spintronic applications. ACS Appl. Mater. Interfaces 2015, 7, 6146–6152.

    CAS  Google Scholar 

  32. Nigh, H. E.; Legvold, S.; Spedding, F. H. Magnetization and electrical resistivity of gadolinium single crystals. Phys. Rev. 1963, 132, 1092–1097.

    CAS  Google Scholar 

  33. Sanna, S.; Dues, C.; Schmidt, W. G.; Timmer, F.; Wollschläger, J.; Franz, M.; Appelfeller, S.; Dähne, M. Rare-earth silicide thin films on the Si(111) surface. Phys. Rev. B 2016, 93, 195407.

    Google Scholar 

  34. Yu, W.; Li, J.; Herng, T. S.; Wang, Z. S.; Zhao, X. X.; Chi, X.; Fu, W.; Abdelwahab, I.; Zhou, J.; Dan, J. D. et al. Chemically exfoliated VSe2 monolayers with room-temperature ferromagnetism. Adv. Mater. 2019, 31, 1903779.

    CAS  Google Scholar 

  35. Mak, K. F.; Shan, J.; Ralph, D. C. Probing and controlling magnetic states in 2D layered magnetic materials. Nat. Rev. Phys. 2019, 1, 646–661.

    Google Scholar 

  36. Frisk, A.; Duffy, L. B.; Zhang, S. L.; van der Laan, G.; Hesjedal, T. Magnetic X-ray spectroscopy of two-dimensional CrI3 layers. Mater. Lett. 2018, 232, 5–7.

    CAS  Google Scholar 

  37. Li, Q.; Yang, M. M.; Gong, C.; Chopdekar, R. V.; N’Diaye, A. T.; Turner, J.; Chen, G.; Scholl, A.; Shafer, P.; Arenholz, E. et al. Patterning-induced ferromagnetism of Fe3GeTe2 van der Waals materials beyond room temperature. Nano Lett. 2018, 18, 5974–5980.

    CAS  Google Scholar 

  38. Park, S. Y.; Kim, D. S.; Liu, Y.; Hwang, J.; Kim, Y.; Kim, W.; Kim, J. Y.; Petrovic, C.; Hwang, C.; Mo, S. K. et al. Controlling the magnetic anisotropy of the van der Waals ferromagnet Fe3GeTe2 through hole doping. Nano Lett. 2020, 20, 95–100.

    CAS  Google Scholar 

  39. Girovsky, J.; Nowakowski, J.; Ali, M. E.; Baljozovic, M.; Rossmann, H. R.; Nijs, T.; Aeby, E. A.; Nowakowska, S.; Siewert, D.; Srivastava, G. et al. Long-range ferrimagnetic order in a two-dimensional supramolecular Kondo lattice. Nat. Commun. 2017, 8, 15388.

    CAS  Google Scholar 

  40. Schulz, S.; Nechaev, I. A.; Güttler, M.; Poelchen, G.; Generalov, A.; Danzenbächer, S.; Chikina, A.; Seiro, S.; Kliemt, K.; Vyazovskaya, A. Y. et al. Emerging 2D-ferromagnetism and strong spin-orbit coupling at the surface of valence-fluctuating EuIr2Si2. npj Quantum Mater. 2019, 4, 26.

    Google Scholar 

  41. Guo, G. Y. Interpretation of X-ray circular dichroism: Multiple-scattering theory approach. Phys. Rev. B 1998, 57, 10295–10298.

    CAS  Google Scholar 

  42. Li, Y. F.; Zhang, K. C.; Liu, Y. Structural, magnetic and topological properties in rare-earth-adsorbed silicene system. J. Magn. Magn. Mater. 2019, 492, 165606.

    CAS  Google Scholar 

  43. Antoniak, C.; Herper, H. C.; Zhang, Y. N.; Warland, A.; Kachel, T.; Stromberg, F.; Krumme, B.; Weis, C.; Fauth, K.; Keune, W. et al. Induced magnetism on silicon in Fe3Si quasi-Heusler compound. Phys. Rev. B 2012, 85, 214432.

    Google Scholar 

  44. Taupin, M.; Sanchez, J. P.; Brison, J. P.; Aoki, D.; Lapertot, G.; Wilhelm, F.; Rogalev, A. Microscopic magnetic properties of the ferromagnetic superconductor UCoGe reviewed by X-ray magnetic circular dichroism. Phys. Rev. B 2015, 92, 035124.

    Google Scholar 

  45. Thole, B. T.; Carra, P.; Sette, F.; van der Laan, G. X-ray circular dichroism as a probe of orbital magnetization. Phys. Rev. Lett. 1992, 68, 1943–1946.

    CAS  Google Scholar 

  46. Carra, P.; Thole, B. T.; Altarelli, M.; Wang, X. D. X-ray circular dichroism and local magnetic fields. Phys. Rev. Lett. 1993, 70, 694–697.

    CAS  Google Scholar 

  47. van der Laan, G.; Thole, B. T. X-ray-absorption sum rules in jj-coupled operators and ground- state moments of actinide ions. Phys. Rev. B 1996, 53, 14458–14469.

    CAS  Google Scholar 

  48. Leuenberger, F.; Parge, A.; Felsch, W.; Fauth, K.; Hessler, M. GdN thin films: Bulk and local electronic and magnetic properties. Phys. Rev. B 2005, 72, 014427.

    Google Scholar 

  49. Averyanov, D. V.; Parfenov, O. E.; Tokmachev, A. M.; Karateev, I. A.; Kondratev, O. A.; Taldenkov, A. N.; Platunov, M. S.; Wilhelm, F.; Rogalev, A.; Storchak, V. G. Fine structure of metal-insulator transition in EuO resolved by doping engineering. Nanotechnology 2018, 29, 195706.

    Google Scholar 

  50. Averyanov, D. V.; Tokmachev, A. M.; Parfenov, O. E.; Karateev, I. A.; Sokolov, I. S.; Taldenkov, A. N.; Platunov, M. S.; Wilhelm, F.; Rogalev, A.; Storchak, V. G. Probing proximity effects in the ferromagnetic semiconductor EuO. Appl. Surf. Sci. 2019, 488, 107–114.

    CAS  Google Scholar 

  51. Bauer, J.; Pascher, H. Diluted magnetic IV–VI compounds. In Diluted Magnetic Semiconductors. Jain, M., Ed.; World Scientific: Singapore, 1991; pp 339–407.

    Google Scholar 

  52. Torelli, D.; Thygesen, K. S.; Olsen, T. High throughput computational screening for 2D ferromagnetic materials: The critical role of anisotropy and local correlations. 2D Mater. 2019, 6, 045018.

    CAS  Google Scholar 

  53. Kim, K.; Lim, S. Y.; Lee, J. U.; Lee, S.; Kim, T. Y.; Park, K.; Jeon, G. S.; Park, C. H.; Park, J. G.; Cheong, H. Suppression of magnetic ordering in XXZ-type antiferromagnetic monolayer NiPS3. Nat. Commun. 2019, 10, 345.

    Google Scholar 

  54. Liao, Z. Q.; Standke, Y.; Gluch, J.; Brázda, P.; Kopecek, J.; Klementová, M.; Palatinus, L.; Zschech, E. Cleaving silicene-terminated calcium disilicide in the transmission electron microscope. Nanotechnology 2020, 31, 095702.

    CAS  Google Scholar 

  55. Appelfeller, S.; Franz, M.; Freter, L.; Hassenstein, C.; Jirschik, H. F.; Dähne, M. Growth and characterization of Tb silicide nanostructures on Si(hhk) substrates. Phys. Rev. Mater. 2019, 3, 126002.

    CAS  Google Scholar 

  56. Sokolov, I. S; Averyanov, D. V.; Parfenov, O. E.; Karateev, I. A.; Taldenkov, A. N.; Tokmachev, A. M.; Storchak, V. G. 2D ferromagnetism in europium/graphene bilayers. Mater. Horiz. 2020, 7, 1372–1378.

    CAS  Google Scholar 

  57. Barla, A.; Nicolás, J.; Cocco, D.; Valvidares, S. M.; Herrero-Martín, J.; Gargiani, P.; Moldes, J.; Ruget, C.; Pellegrin, E.; Ferrer, S. Design and performance of BOREAS, the beamline for resonant X-ray absorption and scattering experiments at the ALBA synchrotron light source. J. Synchrotron Rad. 2016, 23, 1507–1517.

    CAS  Google Scholar 

  58. Ohresser, P.; Otero, E.; Choueikani, F.; Chen, K.; Stanescu, S.; Deschamps, F.; Moreno, T.; Polack, F.; Lagarde, B.; Daguerre, J. P. et al. DEIMOS: A beamline dedicated to dichroism measurements in the 350–2500 eV energy range. Rev. Sci. Instrum. 2014, 85, 013106.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Research Center (NRC) “Kurchatov Institute” (No. 1359, characterization) and the Russian Science Foundation (No. 19-19-00009 (synthesis) and No. 20-79-10028 (magnetization measurements)). D. V. A. also acknowledges support from the President’s scholarship (SP 1398.2019.5). The measurements have been carried out using equipment of the resource centers of electrophysical and electron microscopy techniques in NRC “Kurchatov Institute”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vyacheslav G. Storchak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Averyanov, D.V., Sokolov, I.S., Platunov, M.S. et al. Competing magnetic states in silicene and germanene 2D ferromagnets. Nano Res. 13, 3396–3402 (2020). https://doi.org/10.1007/s12274-020-3027-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-3027-y

Keywords

Navigation