Skip to main content

Advertisement

Log in

Macroalgal composition and community structure of the largest rhodolith beds in the world

  • Original Paper
  • Published:
Marine Biodiversity Aims and scope Submit manuscript

Abstract

The Abrolhos Bank, encompassing a wide portion of the Brazilian continental shelf, harbors the world's largest rhodolith bed, which plays an important role in calcium carbonate production in the South Atlantic Ocean. Little is known about the community structure and species composition of this habitat. The aim of this study was to test the hypothesis that latitudinal differences exist in the community structure of rhodolith beds and their associated flora along the Abrolhos Bank. We sampled a total of 33 sites of rhodolith beds located in three regions—northern, central, and southern—of the Abrolhos Bank between depths of 20 and 70 m. Rhodolith density (rhod. m−2) within the beds ranged from 990 ± 347.6 to 57 ± 18.7, with mean diameter ranging from 9.4 ± 3.2 to 3.1 ± 1.4 cm. A total of 146 macroalgae species were identified, including 14 rhodolith-forming species of crustose coralline algae. Abrolhos Bank supports the world’s greatest species richness of rhodolith-forming CCA, with regional distinctiveness. Observed differences in bed structure among regions can be related to differences in shelf width, slope and depth. The studied rhodolith beds constitute a unique habitat supporting a distinctive diversity of associated organisms, and thus require special attention. We highlight the importance of local and regional differences for defining appropriate conservation strategies to protect the rhodolith bed diversity of Abrolhos Bank.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Amado-Filho GM, Maneveldt G, Marins BV, Manso RCC, Pacheco MR, Guimarães SPB (2007) Structure of rhodolith beds from a depth gradient of 4 to 55 meters at the south of Espírito Santo State coast, Brazil. Cienc Mar 33(4):399–410

    Google Scholar 

  • Amado-Filho GM, Maneveldt G, Pereira-Filho GH, Manso RC, Bahia RG et al (2010) Seaweed diversity associated with a Brazilian tropical rhodolith bed. Cienc Mar 36:371–391

    Article  Google Scholar 

  • Amado-Filho GM, Moura RL, Bastos AC, Salgado LT, Sumida PYG et al (2012a) Rhodolith beds are major CaCO3 bio-factories in the Tropical South West Atlantic. Plos One 7(4):e35171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amado-Filho GM, Pereira-Filho GH, Bahia RG, Abrantes DP, Veras PC, Matheus Z (2012b) Occurrence and distribution of rhodolith beds on the Fernando de Noronha Archipelago of Brazil. Aquat Bot 101:41–45

    Article  Google Scholar 

  • Andrades R, Gomes MP, Pereira-Filho GH, Souza-Filho JF, Albuquerque CQ, Martins AS (2014) The influence of allochthonous macroalgae on the fish communities of tropical sandy beaches. Estuar Coast Shelf Sci 144:75–81

    Article  Google Scholar 

  • Avila E, Riosmena-Rodriguez R (2011) A preliminar evaluation of shallow-water rhodolith beds in Bahia Magdalena, Mexico. Braz J Oceanogr 59(4):365–375

    Article  Google Scholar 

  • Bahia RG, Abrantes DP, Brasileiro PS, Pereira-Filho GH, Amado-Filho GM (2010) Rhodolith bed structure along a depth gradient on the northern coast of Bahia State, Brazil. Braz J Oceanogr 58:323–337

    Article  Google Scholar 

  • Bahia RG, Riosmena-Rodriguez R, Maneveldt GW, Amado-Filho GM (2011) First report of Sporolithon ptychoides (Sporolithales, Corallinophycidae, Rhodophyta) for the Atlantic Ocean. Phycol Res 59:64–69

    Article  Google Scholar 

  • Bahia RG, Amado-Filho GM, Maneveldt GW, Adey WA, Johnson G et al (2014) Sporolithon tenue sp. nov. (Sporolithales, Corallinophycidae, Rhodophyta): A new rhodolith-forming species from the tropical southwestern Atlantic. Phycol Res 62:44–54

    Article  Google Scholar 

  • Bak RPM, Nieuwland G, Meesters EH (2005) Coral reef crisis in deep and shallow reefs: 30 years of constancy and change in reefs of Curacao and Bonaire. Coral Reefs 24:475–479

    Article  Google Scholar 

  • Basso D, Rodondi G, Bressan G (2011) A re-description of Lithothamnion crispatum and the status of Lithothamnion superpositum (Rhodophyta, Corallinales). Phycologia 50(2):144–155

    Article  Google Scholar 

  • Boogert NJ, Paterson DM, Laland KN (2006) The implications of niche construction and ecosystem engineering for conservation biology. Bioscience 56:570–578

    Article  Google Scholar 

  • Clarke KR, Warwick RM (1994) Change in marine communities: an approach to statistical analysis and interpretation. Plymouth Marine Laboratory, Plymouth

    Google Scholar 

  • Crain CM, Bertness MD (2006) Ecosystem engineering across environmental stress gradients: implications for conservation and management. Bioscience 56:211–216

    Article  Google Scholar 

  • Fabricius K, De'ath G (2001) Environmental factors associated with spatial distribution of crustose coralline algae on the Great Barrier Reef. Coral Reefs 19:303–309

    Article  Google Scholar 

  • Foster MS (2001) Rhodoliths: between rocks and soft places - Minireview. J Phycol 37:659–667

    Article  Google Scholar 

  • Foster MS, McConnico LM, Lundsten L, Wadsworth T, Kimball T et al (2007) Diversity and natural history of a Lithothamnion muelleri-Sargassum horridum community in the Gulf of California. Cienc Mar 33(4):367–384

    Google Scholar 

  • Foster M, Amado-Filho GM, Steller D, Riosmena-Rodriguez R, Kamenos N (2013) Rhodoliths and rhodoliths beds. Contribution of SCUBA diving to research and discovery in marine environments, vol 39, 39th edn. Smithsonian Institution Scholarly Press, Washington D.C, pp 143–156

    Google Scholar 

  • Francini-Filho RB, Coni EOC, Meirelles PM, Amado-Filho GM, Thompson FL et al (2013) Dynamics of Coral Reef Benthic Assemblages of the Abrolhos Bank, Eastern Brazil: Inferences on Natural and Anthropogenic Drivers. PLoS ONE 8(1):e54260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonchorosky J, Sales G, Belém MJC, Castro CB (1989) Importance, establishment and management plan of the Parque Nacional Marinho dos Abrolhos, Brazil. In: Neves C (ed) Coastlines of Brazil. American Society of Civil Engineers, New York, pp 185–194

    Google Scholar 

  • Harvey AS, Bird FL (2008) Community structure of a rhodolith bed from coldtemperate waters (southern Australia). Aust J Bot 56:437–450

    Article  Google Scholar 

  • Harvey AS, Woelkerling WJ (2007) A guide to nongeniculate coralline red algal (Corallinales, Rhodophyta) rhodolith identification. Cienc Mar 33(4):411–426

    Google Scholar 

  • Harvey AS, Phillips LE, Woelkerling WJ, Millar AJK (2006) The Corallinaceae, subfamily Mastophoroideae (Corallinales, Rhodophyta) in south-eastern Australia. Aust Syst Bot 19:387–429

    Article  Google Scholar 

  • Hellberg M (2007) Footprints on water: the genetic wake of dispersal among reefs. Coral Reefs 26:463–473

    Article  Google Scholar 

  • Hinojosa-Arango G, Maggs CA, Johnson M (2009) Like a rolling stone: the mobility of maerl (Corallinaceae) and the neutrality of the associated assemblages. Ecology 90(2):517–528

    Article  PubMed  Google Scholar 

  • Kahng SE, Garcia-Sais JR, Spalding HL, Brokovich E, Wagner D et al (2010) Community ecology of mesophotic coral reef ecosystems. Coral Reefs 29:255–275

    Article  Google Scholar 

  • Keith SA, Kerswell AP, Connolly SR (2013) Global diversity of marine macroalgae: environmental conditions explain less variation in the tropics. Glob Ecol Biogeogr. doi:10.1111/geb.12132

    Google Scholar 

  • Kohler KE, Gill SM (2006) Coral Point Count with Excel extensions (CPCe): A visual basic program for the determination of coral and substrate coverage using random point Ncount methodology. Comput Geosci 32:1259–1269

    Article  Google Scholar 

  • Konar B, Riosmena-Rodriguez R, Iken K (2006) Rhodolith bed: a newly discovered habitat in the North Pacific Ocean. Bot Mar 49:355–359

    Article  Google Scholar 

  • Leão ZMAN, Kikuchi RKP (2001) The Abrolhos Reefs of Brazil. In: Seeliger U, Kjerfve B (eds) Coastal Marine Ecosystems of Latin America. Springer-Verlag, Berlin, pp 83–96

    Chapter  Google Scholar 

  • Lesser MP, Slattery M, Leichter JJ (2009) Ecology of mesophotic reefs. J Exp Mar Biol Ecol 375(1–2):1–8

    Article  Google Scholar 

  • McConnico LA, Foster MS, Steller DL, Riosmena-Rodríguez R (2014) Population biology of a long-lived rhodolith: the consequences of becoming old and large. Mar Ecol Prog Ser 504:109–118

    Article  Google Scholar 

  • Milliman JD and Amaral CAB (1974) Economic potential of Brazilian continental margin sediments. Anais do XXVIII Congresso Brasileiro de Geologia 3:335–344

  • Moura RL, Secchin NA, Amado-Filho GM, Francini-Filho RB, Freitas MO et al (2013) Spatial patterns of benthic megahabits and conservation planning in the Abrolhos Bank. Cont Shelf Res 70:109–117

    Article  Google Scholar 

  • Neill KF, Nelson WA, Archino RD, Leduc D, Farr TJ (2014) Northern New Zealand rhodoliths: assessing faunal and floral diversity in physically contrastating beds. Mar Biodivers. doi:10.1007/s12526-014-0229-0

    Google Scholar 

  • Nelson W, D’Archino R, Neill K, Farr T (2014) Macroalgal diversity associated with rhodolith beds in northern New Zealand. Cryptogam Algol 35(1):27–47

    Article  Google Scholar 

  • Pascelli C, Riul P, Riosmena-Rodriguez R, Schemer F, Nunes M, Hall-Spencer J, Oliveira EC, Horta P (2013) Seasonal and depth-driven changes in rhodolith bed structure and associated macroalgae off Arvoredo island (southeastern Brazil). Aquat Bot 111:62–65

    Article  Google Scholar 

  • Pereira-Filho GH, Amado-Filho GM, Moura RL, Bastos AC, Guimarães SM et al (2012) Extensive rhodolith beds cover the summits of southwestern Atlantic Ocean seamounts. J Coast Res 28:261–269

    Article  CAS  Google Scholar 

  • Riul P, Lacouth P, Pagliosa PR, Christoffersen ML, Horta PA (2009) Rhodolith beds at the easternmost extreme of South America: Community structure of an endangered environment. Aquat Bot 90:315–320

    Article  Google Scholar 

  • Segal B, Castro CB (2011) Coral community structure and sedimentation at different distances from the coast of the Abrolhos Bank, Brazil. Braz J Oceanogr 59(2):119–129

    Article  Google Scholar 

  • Steller DL, Foster MS (1995) Environmental factors influencing distribution and morphology of rhodoliths in Bahía Concepcion, BCS, Mexico. J Exp Mar Biol Ecol 194:201–212

    Article  Google Scholar 

  • Steller DL, Riosmena-Rodriguez R, Foster MS, Roberts C (2003) Rhodolith bed diversity in the Gulf of California: the importance of rhodolith structure and consequences of anthropogenic disturbances. Aquat Conserv Mar Freshwat Ecosyst 13:S5–S20

    Article  Google Scholar 

  • Steller DL, Hernández-Ayón JM, Riosmena-Rodríguez R, Cabello-Pasini A (2007) Effect of temperature on photosynthesis, growth and calcification rates of free-living coralline algae Lithophyllum margaritae. Cienc Mar 33(4):441–456

    CAS  Google Scholar 

  • Torrano-Silva BN, Oliveira EC (2013) Macrophytobenthic flora of the Abrolhos Archipelago and the Sebastião Gomes Reef, Brazil. Cont Shelf Res 70:150–158

    Article  Google Scholar 

  • Villas-Boas AB, Riosmena-Rodriguez R, Amado-Filho GM, Maneveldt G, Figueiredo MAO (2009) Rhodolith-forming species of Lithophyllum (Corallinales; Rhodophyta) from Espírito Santo State, Brazil, including the description of L. depressum sp. nov. Phycologia 48(4):237–248

    Article  Google Scholar 

  • Woelkerling WJ, Harvey A (1993) An account of Southern Australian Species of Mesophyllum (Corallinaceae, Rhodophyta). Aust Syst Bot 6:571–637

    Article  Google Scholar 

  • Zar JH (1999) Biostatistical analysis, 4th edn. Prentice-Hall, New Jersey

    Google Scholar 

Download references

Acknowledgments

We thank Conservation International Brasil for logistical assistance. Financial support was provided by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) to GMAF, RBFF and RLM; by Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) to GMAF; BRASOIL to Rede Abrolhos; and Fundação de Amparo à Pesquisa e Inovação do Espírito Santo (FAPES) to ACB.

RGB, DPA and PSB acknowledge post-graduate fellowships from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and from FAPERJ.

We are grateful to the reviewers for their comments that improved the final version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. M. Amado-Filho.

Additional information

Communicated by P. Martinez Arbizu

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brasileiro, P.S., Pereira-Filho, G.H., Bahia, R.G. et al. Macroalgal composition and community structure of the largest rhodolith beds in the world. Mar Biodiv 46, 407–420 (2016). https://doi.org/10.1007/s12526-015-0378-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12526-015-0378-9

Keywords

Navigation