Skip to main content

Advertisement

Log in

Phytochemical analysis of Daphne pontica L. stems with their pro-apoptotic properties against DU-145 and LNCaP prostate cancer cells

  • Research article
  • Published:
DARU Journal of Pharmaceutical Sciences Aims and scope Submit manuscript

Abstract

Background

Daphne pontica is an endemic plant grown wild in the North part of Iran, with anticancer activities.

Objectives

This study aims to analyze the phytochemistry and screen the cytotoxic activity of new bioactive compounds against a panel of cancer cells, in addition to proapototic properties against prostate cancer cells.

Method

Purification procedure was done using repeated column chromatographies by MPLC and HPLC systems. The structures were elucidated by the NMR and exact mass spectroscopy, stereochemistry by NOESY, and absolute configuration by electronic circular dichroism (ECD) spectra. Cytotoxicity was done against DU 145, LNCaP, HeLa, MCF-7, and MDA-MB 231 cells by standard MTT assay. An annexin V/PI assay was performed to measure the type of death following treatment with these compounds for 48 h, followed by the caspase-3 activity test.

Results

In this study, one new dilignan named lignopontin A (9), in addition to 13 known compounds including two phenolic acids (3, 5), one flavanone (6), one bis flavonoid (1), one cumarin glycoside (2), one mono (4) and two dicumarins (10, 11), two lignans (7, 8), and three daphnane diterpenoids (12-14) were isolated for the first time from D. pontica stems. Complete spectral data of compound 12, named as 6,7α-epoxy-5β-hydroxy-9,13,14-ortho-(4,2E)-pentadeca-2,4-diene-1-yl)-resiniferonol, and compound 14, named as 6,7α-epoxy-5β-hydroxy-9,3,14-ortho-(2,4E)-pentadeca-2,4-di-1-yl)-resiniferonol-12β-yl-acetate are reported for the first time. In the MTT assay of newly described compounds against a panel of cancer cells, compounds 9, 12, and 14 possessed moderate to potent cytotoxicity against prostate, breast, and cervical cancer cells in a dose-dependent manner. Flow cytometry analysis against prostate cancer cells indicated that the cytotoxicity of compounds 12 and 14 was due to their ability to induce apoptosis. In the case of compound 9, in Du 145 cells, cell death was mainly through apoptosis. In contrast, LNCaP cells showed both apoptosis and necrotic cell death, predominated by necrosis at the higher concentrations. Caspase-3 activity confirmed apoptosis observed in these compounds through the caspase pathway in prostate cancer cells.

Conclusion

D. pontica is a new source of dimeric phenolic compounds, including bisflavonoids, phenylpropanoid-cumarin adduct, and dilignans, as well as daphnane diterpenoids with resiniferonol core with long-chain orthoester moieties. In cytotoxicity screening, compounds 9, 12, and 14 inhibited the growth of DU-145 and LNCaP cells in a dose-dependent manner with IC50 varied from 0.9 – 27.3 and 25.2 - 87.4 μM, respectively. Among them, 9 exhibited selective growth inhibition against DU 145 treated cells. LNCaP cells demonstrated the highest sensitivity to treatment with compound 12.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Sovrlić MM, Manojlović NT. Plants from the genus Daphne: A review of its traditional uses, phytochemistry, biological and pharmacological activity. Serb J Exp Clin Res. 2017;18(1):69–79.

    Article  CAS  Google Scholar 

  2. Xu WC, Shen JG, Jiang JQ. Phytochemical and biological studies of the plants from the genus Daphne. Chem Biodivers. 2011;8(7):1215–33.

    Article  CAS  PubMed  Google Scholar 

  3. Umezawa T. Diversity in lignan biosynthesis. Phytochem Rev. 2003;2(3):371–90.

    Article  CAS  Google Scholar 

  4. Jin Y-X, Shi L-L, Zhang D-P, Wei H-Y, Si Y, Ma G-X, Zhang J. A review on daphnane-type diterpenoids and their bioactive studies. Molecules. 2019;24(9):1842.

    Article  CAS  PubMed Central  Google Scholar 

  5. Hong J-Y, Nam J-W, Seo E-K, Lee SK. Daphnane diterpene esters with anti-proliferative activities against human lung cancer cells from Daphne genkwa. Chem Pharm Bull. 2010;58(2):234–7.

    Article  CAS  Google Scholar 

  6. Zhan Z-J, Fan C-Q, Ding J, Yue J-M. Novel diterpenoids with potent inhibitory activity against endothelium cell HMEC and cytotoxic activities from a well-known TCM plant Daphne genkwa. Biorg Med Chem. 2005;13(3):645–55.

    Article  CAS  Google Scholar 

  7. Zhang S, Li X, Zhang F, Yang P, Gao X, Song Q. Preparation of yuanhuacine and relative daphne diterpene esters from Daphne genkwa and structure–activity relationship of potent inhibitory activity against DNA topoisomerase I. Biorg Med Chem. 2006;14(11):3888–95.

    Article  CAS  Google Scholar 

  8. Nie YW, Li Y, Luo L, Zhang CY, Fan W, Gu WY, Shi KR, Zhai XX, Zhu JY. Phytochemistry and Pharmacological Activities of the Diterpenoids from the Genus Daphne. Molecules. 2021;26(21):6598.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tosun A, Özkal N. Studies on the anatomical structure of the leaf and stem of Daphne pontica L.(Thymelaeaceae). Fabad. J Pharm Sci. 2002;27(4):205–10.

    Google Scholar 

  10. Sanda MA, Zengin G, Aktumsek A, Cakmak YS. Evaluation of antioxidant potential of two Daphne species (D. gnidioides and D. pontica) from Turkey. Emir J Food Agric. 2015:4878–494.

  11. Kumar S, Bajwa BS, Kuldeep S, Kalia AN. Anti-inflammatory activity of herbal plants: a review. Int J Adv Pharm Biol Chem. 2013;2(2):272–81.

    Google Scholar 

  12. Kupeli E, Tosun A, Yesilada E. Assessment of anti-inflammatory and antinociceptive activities of Daphne pontica L.(Thymelaeaceae). J Ethnopharmacol. 2007;113(2):332–7.

    Article  PubMed  Google Scholar 

  13. Gürbüz İ, Demirci B, Franz G, BAŞER KH, Yeşilada E, Demirci F. Comparison of the volatiles of Daphne pontica L. and D. oleoides Schreber subsp. oleoides isolated by hydro-and microdistillation methods. Turk. J Biol. 2013;37(1):114–21.

    Google Scholar 

  14. Alimirah F, Chen J, Basrawala Z, Xin H, Choubey D. DU-145 and PC-3 human prostate cancer cell lines express androgen receptor: implications for the androgen receptor functions and regulation. FEBS Lett. 2006;580(9):2294–300.

    Article  CAS  PubMed  Google Scholar 

  15. Aghaei M, Karami-Tehrani F, Panjehpour M, Salami S, Fallahian F. Adenosine induces cell-cycle arrest and apoptosis in androgen-dependent and -independent prostate cancer cell lines, LNcap-FGC-10, DU-145, and PC3. Prostate. 2012;72(4):361–75.

    Article  CAS  PubMed  Google Scholar 

  16. Tehranian N, Sepehri H, Mehdipour P, Biramijamal F, Hossein-Nezhad A, Sarrafnejad A, Hajizadeh E. Combination effect of PectaSol and Doxorubicin on viability, cell cycle arrest and apoptosis in DU-145 and LNCaP prostate cancer cell lines. Cell Biol Int. 2012;36(7):601–10.

    Article  CAS  PubMed  Google Scholar 

  17. Keyvanloo Shahrestanaki M, Bagheri M, Ghanadian M, Aghaei M, Jafari SM. Centaurea cyanus extracted 13-O-acetylsolstitialin A decrease Bax/Bcl-2 ratio and expression of cyclin D1/Cdk-4 to induce apoptosis and cell cycle arrest in MCF-7 and MDA-MB-231 breast cancer cell lines. J Cell Biochem. 2019;120(10):18309–19.

    Article  CAS  PubMed  Google Scholar 

  18. Liang S, Tian J-M, Feng Y, Liu X-H, Xiong Z, Zhang W-D. Flavonoids from Daphne aurantiaca and their inhibitory activities against nitric oxide production. Chem Pharm Bull. 2011;59(5):653–6.

    Article  CAS  Google Scholar 

  19. Liao SG, Zhang BL, Wu Y, Yue JM. New phenolic components from Daphne giraldii. Helv Chim Acta. 2005;88(11):2873–8.

    Article  CAS  Google Scholar 

  20. Baba K, Takeuchi K, Hamasaki F, Kozawa M. Three new flavans from the root of Daphne odora Thunb. Chem Pharm Bull. 1985;33(1):416–9.

    Article  CAS  Google Scholar 

  21. Li X-N, Tong S-Q, Cheng D-P, Li Q-Y, Yan J-Z. Coumarins from Edgeworthia chrysantha. Molecules. 2014;19(2):2042–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Venditti A, Sanna C, Lorenzetti LM, Ballero M, Bianco A. New coumarinyl ethers in Daphne oleoides Schreb. Collected from Sardinia island. Chem Biodivers. 2017;14(6):e1700072.

    Article  CAS  Google Scholar 

  23. Riaz M, Malik A. Novel Coumarin glycosides from Daphne oleoides. Helv Chim Acta. 2001;84(3):656–61.

    Article  CAS  Google Scholar 

  24. Maihesuti L, Lan P, Imerhasan M, Eshbakova K, Jia X. A New Spiro Compound from Caragana acanthophylla. Chem Nat Compd. 2017;53(4):646–8.

    Article  CAS  Google Scholar 

  25. Cho J-Y, Moon J-H, Seong K-Y, Park K-H. Antimicrobial activity of 4-hydroxybenzoic acid and trans 4-hydroxycinnamic acid isolated and identified from rice hull. Biosci Biotechnol Biochem. 1998;62(11):2273–6.

    Article  CAS  PubMed  Google Scholar 

  26. Olsen HT, Stafford GI, Van Staden J, Christensen SB, Jäger AK. Isolation of the MAO-inhibitor naringenin from Mentha aquatica L. J Ethnopharmacol. 2008;117(3):500–2.

    Article  CAS  PubMed  Google Scholar 

  27. Li J, Shen Q, Bao C-H, Chen L-T, Li X-R. A new dicoumarinyl ether from the roots of Stellera chamaejasme L. Molecules. 2014;19(2):1603–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Belletire JL, Fry DF. Total synthesis of (.+-.)-wikstromol. J Organomet Chem. 1988;53(20):4724–9.

    Article  CAS  Google Scholar 

  29. Yao H, Zhang X, Zhang N, Li J, Li Y, Wei Q. Wikstromol from Wikstroemia indica induces apoptosis and suppresses migration of MDA-MB-231 cells via inhibiting PI3K/Akt pathway. J Nat Med. 2021;75(1):178–85.

    Article  CAS  PubMed  Google Scholar 

  30. Okunishi T, Umezawa T, Shimada M. Isolation and enzymatic formation of lignans ofDaphne genkwa andDaphne odora. J Wood Sci. 2001;47(5):383–8.

    Article  CAS  Google Scholar 

  31. Min B-S, Na M-K, Oh S-R, Ahn K-S, Jeong G-S, Li G, Lee S-K, Joung H, Lee H-K. New Furofuran and Butyrolactone Lignans with Antioxidant Activity from the Stem Bark of Styrax japonica. J Nat Prod. 2004;67(12):1980–4.

    Article  CAS  PubMed  Google Scholar 

  32. Huang S-Z, Zhang X, Ma Q-Y, Peng H, Zheng Y-T, Hu J-M, Dai H-F, Zhou J, Zhao Y-X. Anti-HIV-1 tigliane diterpenoids from Excoecaria acertiflia Didr. Fitoterapia. 2014;95:34–41.

    Article  CAS  PubMed  Google Scholar 

  33. Abe F, Iwase Y, Yamauchi T, Kinjo K, Yaga S. Daphnane diterpenoids from the bark of Wikstroemia retusa. Phytochemistry. 1997;44(4):643–7.

    Article  CAS  Google Scholar 

  34. Abe F, Iwase Y, Yamauchi T, Kinjo K, Yaga S, Ishii M, Iwahana M. Minor daphnane-type diterpenoids from Wikstroemia retusa. Phytochemistry. 1998;47(5):833–7.

    Article  CAS  PubMed  Google Scholar 

  35. Jolad SD, Hoffmann JJ, Timmermann BN, Schram KH, Cole JR, Bates RB, Klenck RE, Tempesta MS. Daphnane diterpenes from Wikstroemia monticola: wikstrotoxins AD, huratoxin, and excoecariatoxin. J Nat Prod. 1983;46(5):675–80.

    Article  CAS  Google Scholar 

  36. Pan L, Zhang XF, Deng Y, Zhou Y, Wang H, Ding LS. Chemical constituents investigation of Daphne tangutica. Fitoterapia. 2010;81(1):38–41.

    Article  CAS  PubMed  Google Scholar 

  37. Zhou T, Zhang SW, Liu SS, Cong HJ, Xuan LJ. Daphnodorin dimers from Edgeworthia chrysantha with α-glucosidase inhibitory activity. Phytochem Lett. 2010;3(4):242–7.

    Article  CAS  Google Scholar 

  38. Landete JM. Plant and mammalian lignans: A review of source, intake, metabolism, intestinal bacteria and health. Food Res Int. 2012;46(1):410–24.

    Article  CAS  Google Scholar 

  39. Maimaitili A, Shu Z, Cheng X, Kaheerman K, Sikandeer A, Li W. Arctigenin, a natural lignan compound, induces G0/G1 cell cycle arrest and apoptosis in human glioma cells. Oncol Lett. 2017;13(2):1007–13.

    Article  CAS  PubMed  Google Scholar 

  40. Peuhu E, Rivero-Müller A, Stykki H, Torvaldson E, Holmbom T, Eklund P, Unkila M, Sjöholm R, Eriksson JE. Inhibition of Akt signaling by the lignan matairesinol sensitizes prostate cancer cells to TRAIL-induced apoptosis. Oncogene. 2010;29(6):898–908.

    Article  CAS  PubMed  Google Scholar 

  41. Hecker E. New toxic, irritant and cocarcinogenic diterpene esters from Euphorbiaceae and from Thymelaeaceae. Pure Appl Chem. 1977;49(9):1423–31.

    Article  CAS  Google Scholar 

  42. Liao SG, Chen HD, Yue JM. Plant orthoesters. Chem Rev. 2009;109(3):1092–140.

    Article  CAS  PubMed  Google Scholar 

  43. Jo S-K, Hong J-Y, Park HJ, Lee SK. Anticancer activity of novel daphnane diterpenoids from Daphne genkwa through cell-cycle arrest and suppression of Akt/STAT/Src signalings in human lung cancer cells. Biomol Ther. 2012;20(6):513–9.

    Article  CAS  Google Scholar 

  44. Hong J-Y, Chung H-J, Lee H-J, Park HJ, Lee SK. Growth inhibition of human lung cancer cells via down-regulation of epidermal growth factor receptor signaling by yuanhuadine, a daphnane diterpene from Daphne genkwa. J Nat Prod. 2011;74(10):2102–8.

    Article  CAS  PubMed  Google Scholar 

  45. Yazdanparast R, Sadeghi H. Nucleic acid synthesis in cancerous cells under the effect of gnidilatimonoein from Daphne mucronata. Life Sci. 2004;74(15):1869–76.

    Article  CAS  PubMed  Google Scholar 

  46. Li F, Sun Q, Hong L, Li L, Wu Y, Xia M, Ikejima T, Peng Y, Song S. Daphnane-type diterpenes with inhibitory activities against human cancer cell lines from Daphne genkwa. Bioorg Med Chem Lett. 2013;23(9):2500–4.

    Article  CAS  PubMed  Google Scholar 

  47. Nouri K, Yazdanparast R. Proliferation inhibition, cell cycle arrest and apoptosis induced in HL-60 cells by a natural diterpene ester from Daphne mucronata. DARU J Pharm Sci. 2011;19(2):145.

    CAS  Google Scholar 

Download references

Funding

The research leading to these results received funding from Vice-chancellery for Research and Technology, Isfahan University of Medical Sciences, Iran, under Grant number: 194247.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study's conception and design. Material preparation, data collection, and analysis were performed by [Maryam Nikahd], [Mustafa Ghanadian], and [Mahmoud Aghaei]. Seyed Ebrahim Sajjadi did conceptualization. Zulfiqar Ali and Ikhlas A. Khan reviewed, edited, and analyzed the structure. The first draft of the manuscript was written by [Mustafa Ghanadian], and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Mustafa Ghanadian.

Ethics declarations

Conflicts of interest/Competing interests

The authors declare that they have no conflict of interest. The authors declare they have no financial interests.

Ethics approval

This work has been approved by the Ethics Committee in the Isfahan University of Medical Science by ethical code: IR.MUI.REC.1394.247.

Consent to participate

Not applicable

Consent for publication

Not applicable

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(PDF 2721 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikahd, M., Aghaei, M., Ali, Z. et al. Phytochemical analysis of Daphne pontica L. stems with their pro-apoptotic properties against DU-145 and LNCaP prostate cancer cells. DARU J Pharm Sci 30, 85–101 (2022). https://doi.org/10.1007/s40199-022-00434-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40199-022-00434-y

Keywords

Navigation