Skip to main content
Log in

What condensed matter physics and statistical physics teach us about the limits of unitary time evolution

  • Regular Paper
  • Published:
Quantum Studies: Mathematics and Foundations Aims and scope Submit manuscript

Abstract

The Schrödinger equation for a macroscopic number of particles is linear in the wave function, deterministic, and invariant under time reversal. In contrast, the concepts used and calculations done in statistical physics and condensed matter physics involve stochasticity, nonlinearities, irreversibility, top-down effects, and elements from classical physics. This paper analyzes several methods used in condensed matter physics and statistical physics and explains how they are in fundamental ways incompatible with the above properties of the Schrödinger equation. The problems posed by reconciling these approaches to unitary quantum mechanics are of a similar type as the quantum measurement problem. This paper, therefore, argues that rather than aiming at reconciling these contrasts one should use them to identify the limits of quantum mechanics. The thermal wavelength and thermal time indicate where these limits are for (quasi-)particles that constitute the thermal degrees of freedom.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adler, S.L.: Why decoherence has not solved the measurement problem: a response to P.W. Anderson. Stud. Hist. Philos. Sci. Part B Stud. Hist. Philos. Mod. Phys. 34(1), 135–142 (2003)

    Article  Google Scholar 

  2. Ballentine, L.E.: The statistical interpretation of quantum mechanics. Rev. Mod. Phys. 42, 358–381 (1970)

    Article  MATH  Google Scholar 

  3. Bassi, A., Lochan, K., Satin, S., Singh, T.P., Ulbricht, H.: Models of wave-function collapse, underlying theories, and experimental tests. Rev. Mod. Phys. 85(2), 471 (2013)

    Article  Google Scholar 

  4. Breuer, H.-P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press on Demand, Oxford (2002)

    MATH  Google Scholar 

  5. Chibbaro, S., Rondoni, L., Vulpiani, A.: Reductionism, Emergence and Levels of Reality, Ch. 6. Springer, Berlin (2014)

    Book  MATH  Google Scholar 

  6. Deutsch, J.M.: Quantum statistical mechanics in a closed system. Phys. Rev. A 43(4), 2046 (1991)

    Article  Google Scholar 

  7. Drossel, B.: Connecting the quantum and classical worlds. Annalen der Physik 529(3), 1600256 (2017)

    Article  Google Scholar 

  8. Drossel, B.: Ten reasons why a thermalized system cannot be described by a many-particle wave function. Stud. Hist. Philos. Sci. Part B Stud. Hist. Philos. Mod. Phys. 58, 12–21 (2017)

    Article  MATH  Google Scholar 

  9. Drossel, B., Ellis, G.: Contextual wavefunction collapse: an integrated theory of quantum measurement. New J. Phys. 20(11), 113025 (2018)

    Article  Google Scholar 

  10. Eisert, J., Friesdorf, M., Gogolin, C.: Quantum many-body systems out of equilibrium. Nat. Phys. 11(2), 124–130 (2015)

    Article  Google Scholar 

  11. Ellis, G.: How Can Physics Underlie the Mind? Top-down Causation in the Human Context. Springer, Heidelberg (2016)

    Google Scholar 

  12. Ellis, G.F.R.: On the limits of quantum theory: contextuality and the quantum-classical cut. Ann. Phys. 327(7), 1890–1932 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hugh Everett, I.I.I.: “Relative state” formulation of quantum mechanics. Rev. Mod. Phys. 29(3), 454 (1957)

    Article  MathSciNet  Google Scholar 

  14. Fuchs, C.A.: Qbism, the perimeter of quantum Bayesianism. arXiv preprint arXiv:1003.5209 (2010)

  15. Gisin, N.: Collapse. What else? In: Gao, S. (ed.) Collapse of the Wave Function: Models, Ontology, Origin, and Implications, pp. 207–224. Cambridge University Press, Cambridge (2018)

  16. Gisin, N.: Indeterminism in physics, classical Chaos and Bohmian mechanics. Are real numbers really real? arXiv preprint arXiv:1803.06824 (2018)

  17. Gogolin, C., Eisert, J.: Equilibration, thermalisation, and the emergence of statistical mechanics in closed quantum systems. Rep. Prog. Phys. 79(5), 056001 (2016)

    Article  Google Scholar 

  18. Grabowski, P.E.: A review of wave packet molecular dynamics. In: Frontiers and Challenges in Warm Dense Matter, pp. 265–282. Springer, Berlin (2014)

    Google Scholar 

  19. Grangier, P., Auffèves, A.: What is quantum in quantum randomness? Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 376(2123), 20170322 (2018)

    Article  Google Scholar 

  20. Griffiths, R.B.: Consistent histories and the interpretation of quantum mechanics. J. Stat. Phys. 36(1–2), 219–272 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hollowood, T.J.: Decoherence, discord, and the quantum master equation for cosmological perturbations. Phys. Rev. D 95(10), 103521 (2017)

    Article  MathSciNet  Google Scholar 

  22. Jaynes, E.T.: Information theory and statistical mechanics. Phys. Rev. 106(4), 620 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kittel, C., Kroemer, H.: Thermal Physics. Macmillan, London (1980)

    Google Scholar 

  24. Walter Kohn and Lu Jeu Sham: Self-consistent equations including exchange and correlation effects. Phys. Rev. 140(4A), A1133 (1965)

    Article  MathSciNet  Google Scholar 

  25. Landau, L.D., Lifshitz, E.M.: Course of Theoretical Physics. Elsevier, Amsterdam (2013)

    Google Scholar 

  26. Laughlin, R.B., Pines, D.: The theory of everything. In: Proceedings of the national academy of sciences of the United States of America, pp. 28–31 (2000)

    Article  MathSciNet  Google Scholar 

  27. Leggett, A.J.: On the nature of research in condensed-state physics. Found. Phys. 22(2), 221–233 (1992)

    Article  MathSciNet  Google Scholar 

  28. Marx, D., Hutter, J.: Ab initio molecular dynamics: theory and implementation. Mod. Methods Algorithms Quantum Chem. 1, 301–449 (2000)

    Google Scholar 

  29. Matyus, E.: Pre-born-oppenheimer molecular structure theory. arXiv preprint arXiv:1801.05885 (2018)

  30. Popescu, S., Short, A.J., Winter, A.: Entanglement and the foundations of statistical mechanics. Nat. Phys. 2(11), 754–758 (2006)

    Article  Google Scholar 

  31. Primas, H.: Chemistry, Quantum Mechanics and Reductionism: Perspectives in Theoretical Chemistry, vol. 24. Springer, Heidelberg (2013)

    Google Scholar 

  32. Reimann, P., Evstigneev, M.: Quantum versus classical foundation of statistical mechanics under experimentally realistic conditions. Phys. Rev. E 88(5), 052114 (2013)

    Article  Google Scholar 

  33. Rovelli, C.: Relational quantum mechanics. Int. J. Theor. Phys. 35(8), 1637–1678 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  34. Rovelli, C.: Space is blue and birds fly through it. Philos. Trans. R. Soc. A 376, 2017.0312 (2018)

    Article  Google Scholar 

  35. Schlosshauer, M.: Decoherence, the measurement problem, and interpretations of quantum mechanics. Rev. Mod. Phys. 76(4), 1267 (2005)

    Article  Google Scholar 

  36. Schwabl, F.: Advanced quantum mechanics. Springer, Berlin, Heidelberg (2005)

  37. Schwabl, F., Brewer, W.D.: Statistical Mechanics. Advanced Texts in Physics. Springer, Berlin (2006)

    Google Scholar 

  38. Schwabl, F.: Quantum mechanics. Springer, Berlin, Heidelberg (2007)

  39. Srednicki, M.: Chaos and quantum thermalization. Phys. Rev. E 50(2), 888 (1994)

    Article  MathSciNet  Google Scholar 

  40. Tuckerman, M.E., Martyna, G.J.: Understanding modern molecular dynamics: techniques and applications. J. Phys. Chem. B 104(2), 159–178 (2000)

    Article  Google Scholar 

  41. Weiss, U.: Quantum Dissipative Systems, vol. 13. World Scientific, Singapore (2012)

    Book  MATH  Google Scholar 

  42. Wojciech Hubert Zurek: Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys. 75(3), 715 (2003)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Drossel.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Drossel, B. What condensed matter physics and statistical physics teach us about the limits of unitary time evolution. Quantum Stud.: Math. Found. 7, 217–231 (2020). https://doi.org/10.1007/s40509-019-00208-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40509-019-00208-3

Keywords

Navigation