Skip to main content
Log in

Eutrophication: An ecological vision

  • Published:
The Botanical Review Aims and scope Submit manuscript

Abstract

The present review deals with the studies conducted on the impact of phosphorus on growth of aquatic plants causing eutrophication in well-known water bodies the world over. The review covers the definition and concept of eutrophication and the adverse effects on quality and ecosystem functioning. The eutrophication of several water bodies leads to significant changes in the structure and function of the aquatic ecosystem. Several activities of human interest, including navigation and power generation, are hampered. A large number of lakes in the United States, Europe, and Asia have recently been found to be highly eutrophic. Water, the precious fluid, is not uniformly distributed throughout the surface of the earth. Most of the water bodies world over are surrounded with densely populated human settlement areas and agricultural fields. The size of smaller water bodies in human settlement areas is on the decrease with rise in population. After treatment, a large quantity of sewage from the households is regularly discharged into the water bodies. The runoff brings down fertilizers and other chemicals from agricultural fields. The phosphorus contained in these effluents is known to promote excessive growth of plants. This review is an account of the role, sources, and monitoring of phosphorus, as well as its cycle. The natural phosphorus cycle originating from the weathering of phosphate rock is now a two-way operation, due to significant addition of phosphorus from anthropogenic sources.

The detergents that are the major source of phosphorus inputs into water bodies (through sewage and drainage systems) have been thoroughly discussed. The major part of detergents comprises builders containing polyphosphate salts. An environment-friendly and effective synthetic builder is yet to be developed to replace existing phosphorus containing builders of detergents. The utility of the alternative builders available has been reviewed. Nitrogen has also been reported to affect the phytoplankton production in eutrophic waters in temperate regions. Several environmental factors have also been found to add to the problem of eutrophication in addition to nutrients. Several limiting factors—namely, CO2 level, temperature, pH, light, and dissolved oxygen—are known to affect eutrophic water bodies. Eutrophication not only results in algal bloom but also affects wetland plants and activates early onset of natural succession at a relatively faster rate. Some of the plant species reported and studied world over are the best indicators of the level of eutrophication. The studies on the change in structure, function, and diversity of the ecosystem have been used as parameters to assess the level of eutrophication. In several countries adequate control measures have been adopted in to control eutrophication. But these measures were found to be only partially effective in controlling the phosphorus unloading in water bodies. In this review some control measures are suggested, with emphasis on biological control. The review concludes by taking into account the ecological prospective of the water—the precious fluid and a basis of life on the earth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Abe, K., A. Imamaki &M. Hirano. 2002. Removal of nitrate, nitrite, ammonium and phosphate ions from water by the aerial microalgaTrentepohilia aurea. Journal of Applied Phycology 14: 129–134.

    CAS  Google Scholar 

  • Adoni, A. D. & M. Yadav. 1985. Chemical and productional characteristics ofPotamogelon pectinutus (Linn.) andHydrilla verticillata (Royle) in a eutrophic lake. Pp. 96–105in A. D. Adoni (ed.), Proceedings of the National Symposium on Pure and Applied Limnology. Bulletin of Botanical Society, Univ. of Sagar.

  • Ambasht, R. S. &P. K. Ambasht. 1992. Environment and Pollution. Student Friends & Co. Publishers, Varanasi.

    Google Scholar 

  • An, K. G. &D. S. Kim. 2003. Response of reservoir water quality to nutrient inputs from streams and inlake fishfarms. Water, Air and Soil Pollution 149: 27–49.

    CAS  Google Scholar 

  • Ansari, A. A. 2005. Studies on the role of selected household detergents in the eutrophication of freshwater ecosystem. Ph.D. diss., Aligarh Muslim Univ.

  • — &F. A. Khan. 2002. Nutritional status and quality of water of a waste water pond in Aligarh showing blooms ofSpirodela polyrrhiza (L.) Shleid. Journal of Ecophysiology and Occupational Health 2: 185–189.

    CAS  Google Scholar 

  • Arvin, E. 1985. Observations supporting phosphorus removal by biologically mediated chemical precipitation: A review. Water Sci. Technol. 15: 43–63.

    Google Scholar 

  • — &G. H. Kristensen. 1983. Phosphate precipitation in biofilms and floes. Water Sci. Technol. 15: 65–85.

    CAS  Google Scholar 

  • Asthana, D. K. &M. Asthana. 1998. Environment: Problems and solutions. S. Chand & Co., Ram Nagar, New Delhi.

    Google Scholar 

  • Aziz, A. &N. K. Mobina. 1999. Growth and morphology ofS. polyrrhiza andS. punctata as affected by some environmental factors. Bangladesh Journal of Botany 28: 133–138.

    Google Scholar 

  • Barbieri, A. &M. Simona. 2001. Trophic evolution of Lake Lugano related to external load reduction: Changes in phosphorus and nitrogen as well as oxygen balance and biological parameters. Lakes & Reservoirs: Research and Management 6: 37–47.

    CAS  Google Scholar 

  • Beeby, A. 1995. Applying ecology. Chapman & Hall, London.

    Google Scholar 

  • Beeton, A. M. 2002. Large freshwater lakes: Present states, trends and future. Environmental Conservation 29: 21–38.

    CAS  Google Scholar 

  • Beltman, B., P. R. F. Barrett, M. P. Greaves, K. J. Murphy, A. H. Pieterse, P. M. Wade & M. Wallsten. 1990. Aquatic macrophytes: A useful tool against eutrophication. Pp. 35–38in Proceedings of the 8th International Symposium on Aquatic Weeds, Uppsala, Sweden, 13–17 August 1990.

  • Benndorf, J. &M. Henning. 1989.Daphnia and toxic worms ofMicrocystis aeruginosa in Bentzen reservoir (GDR). Int. Rev. Ges. Hydrobiol. 74: 233–248.

    Google Scholar 

  • Biernacki, M., J. Lovett-Doust &L. Lovett-Doust. 1996.Vallisnaria americana as a biomonitors of aquatic ecosystems: Leaf-to-root surface area ratios and organic contamination in the Huron-Erie Corridor. Journal of Great Lakes Research 22: 289–303.

    CAS  Google Scholar 

  • Biggs, B. J. F. 2000. Eutrophication of streams and rivers: Dissolved nutrient-chlorophyll relationships for benthic algae. Journal of the North American Benthological Society 19: 17–31.

    Google Scholar 

  • Billore, S. K., R. Bharadia &A. Kumar. 1998. Potential removal of paniculate matter and nitrogen through roots of water hyacinth in a tropical natural wetland. Current Science 74: 154–156.

    Google Scholar 

  • Bitton, G. 1999. Wastewater microbiology. John Wiley & Sons, New York.

    Google Scholar 

  • Bonsdorff, E., C. Ronnberg, K. Aarnio, E. Orive, M. Elliott &V. N. de Jonge. 2002. Some ecological properties in relation to eutrophication in the Baltic Sea. Hydrobiologia 475-476: 371–377.

    Google Scholar 

  • Brönmark, C. &L. A. Hansson. 2002. Environmental issues in lakes and ponds: Current state and perspectives. Environmental Conservation 29: 290–306.

    Google Scholar 

  • —,J. Dahl &L. Greenberg. 1997. Complex trophic interactions in benthic food chains. Pp. 55–88in B. Streit, T. Städler & C. Lively (eds.), Ecology and evolution of freshwater animals. Brikhäuser Publishers, Basel.

    Google Scholar 

  • Campbell, A. 1998. Development of the detergent industry. http://www.chemistry.co.nz/deterghistory.htm

  • Campus-Ortega, H. R. 1998. Eutrophication and macronutrients in lentic ecosystems. IDESIA 15: 95–106.

    Google Scholar 

  • Carpenter, S. R. ed. 1988. Complex interactions in lake communities. Springer-Verlag, New York.

    Google Scholar 

  • Chandrashekar, J. S., K. Lenin Babu &R. K. Somashekar. 2003. Impact of urbanization on Bellandur Lake, Bangalore: A case study. J. Env. Biol. 24: 223–227.

    CAS  Google Scholar 

  • Chapman, A. S., I. D. L. Forster, J. A. Lees, R. J. Hodgkinson &R. H. Jackson. 2003. Sediments and phosphorus delivery from field to river via land drains in England and Wales: A risk assessment using field and national databases. Soil Use and Management 19: 347–355.

    Google Scholar 

  • Chattopadhyay, P. &D. P. Kushari. 2003. Study of some physico-chemical characteristics of 5 water bodies enriched with runoff from different sources in a Latiniti Zone of West Bengal. Indian Journal of Environmental Protection 23: 123–1238.

    Google Scholar 

  • Colijn, F., K. J. Hesse, N. Ladwig, U. Tillmann, O. Vadstein &Y. Olsen. 2002. Effects of the large-scale uncontrolled fertilization process along the continental coastal North Sea. Hydrobiologia 484: 133–148.

    Google Scholar 

  • Colinvaux, P. 1993. Ecology 2. John Wiley and Sons, New York.

    Google Scholar 

  • Coveney, M. F., D. L. Stites, E. F. Lowe, L. E. Battoe &R. Conrow. 2002. Nutrient removal from eutrophic lake water by wetland filtration. Ecological Engineering 19, 141–159.

    Google Scholar 

  • Deegan, L. A., A. Wright, S. G. Ayvazian, J. T. Finn, H. Golden, R. R. Merson &J. Harrison. 2002. Nitrogen loading alters seagrass ecosystem structure and support of higher tropic levels. Aquatic Conservation 12: 193–212.

    Google Scholar 

  • Denys, L. 2003. Environmental changes in man-made coastal dune pools since 1850 as indicated by sedimentary and epiphytic diatom assemblages (Belgium). Aquatic Conservation 13: 191–211.

    Google Scholar 

  • Devlin, R. M. &F. H. Witham. 1986. Plant physiology. Ed. 4. CBS Publishers & Distribution, New-Delhi.

    Google Scholar 

  • Dodds, W. K. 2003. The role of periphyton in phosphorus retention in shallow freshwater aquatic systems. Journal of Phycology 39: 840–849.

    CAS  Google Scholar 

  • Emery, S. L. &J. A. Perry. 1996. Decompsition rates and phosphorus concentrations of purple loosestrife (Lythrim salicaria) and cattail (Typha spp.) in fourteen Minnesota wetlands. Hydrobiologia 323: 129–138.

    CAS  Google Scholar 

  • Florentz, M. &P. Hartemann. 1984. Screening for phosphate accumulating bacteria isolated from activated sludge. Environ. Technol. Lett. 5: 457–463.

    CAS  Google Scholar 

  • Foy, R. H., S. D. Lennox &C. E. Gibson. 2003. Changing perspectives on the importance of urban phosphorus inputs as the cause of nutrient enrichment in Lough Neagh. Science of the Total Environment 310: 87–99.

    PubMed  CAS  Google Scholar 

  • Francis, K., P. Shanmughavel, M. Anbazhangan &T. Parimelazhagan. 1997. Investigation of pollution and its influence on the biomass of a monsoon fed fresh water pond. Pollution Research 16: 133–137.

    CAS  Google Scholar 

  • Garg, J., H. K. Garg &J. Garg. 2002. Nutrient loading and its consequences in a lake ecosystem. Tropical Ecology 43: 355–358.

    Google Scholar 

  • —. 2003. Algae as indicators of eutrophication: A microcosmal approach. Environment and Ecology 21: 313–316.

    Google Scholar 

  • Garg, S. K. 1998. Sewage disposal and air pollution engineering: Environmental engineering. Ed. 11. Khanna Publications, Delhi.

    Google Scholar 

  • George, D. G. &S. I. Heaney. 1978. Factors influencing the spatial distribution of phytoplankton in small productive lake. Journal of Ecology 66: 133–155.

    CAS  Google Scholar 

  • Ghosh, C., J. Frijns, G. Ghosh &G. Lettinga. 1995. Water recycling through duckweed (Lemna minor) culture during post-summer months in European Climate. Indian Journal of Environmental Protection 15: 677–684.

    Google Scholar 

  • Gibson, C. E., N. J. Anderson, Q. Zhou, M. Allen &P. G Appleby. 2003. Changes in sediment and diatom deposition in Lower Lough Erne c. 1920–90. Biology and Environment 103B: 31–38.

    Google Scholar 

  • Giese, A. C. 1979. Cell physiology. Ed. 5. Toppan Co., Tokyo.

    Google Scholar 

  • Gopal, B., R. E. Turner, R. G. Wetzel &D. F. Whigham. 1982. Wetlands: Ecology and management. National Institute of Ecology and International Scientific Publications, New Delhi.

    Google Scholar 

  • Gulati, R. D. &E. van Donk. 2002. Lakes in the Netherlands, their origin, eutropication and restoration: State of the art review. Hydrobiologia 478: 73–106.

    Google Scholar 

  • Gurbuz, H. &E. Kivrak. 2002. Use of epilithic diatoms to evaluate water quality in the Karasu River of Turkey. J. Env. Biol. 23: 239–246.

    CAS  Google Scholar 

  • Haberman, J., A. Jaani, A. Kangur, K. Kangur, R. Laugaste, A. Milius, H. Maemets &E. Pihu. 2000. Lake Peipsi and its ecosystem. Proceedings of the Estonian Academy of Sciences Biology Ecology 49: 3–18.

    Google Scholar 

  • Hammer, M. J. 1986. Water and wastewater technology. John Wiley & Sons, New York.

    Google Scholar 

  • Hartig, J. H. 1981. Preliminary effects of the detergent phosphorus ban in Michigan 1981. Publication No. 3833–9900. Michigan Department of Natural Resources, Lansing.

    Google Scholar 

  • —,L. Lovett-Doust &P. Seidl. 1990. Successes and challenges in developing and implementing remedial action plans to restore degraded areas of the Great Lakes. Pp. 269–278in J. E. Fitzgibbon (ed.), International and transboundary water resources issues. TPS-90-1. American Water Resources Association, Bethesda, MD.

    Google Scholar 

  • —,M. Zarull, S. Leppard, L. New, G Daniel, T. Coape-Arnold, S. Skavorneck &T. Eder. 1991. Great Lakes remedial action plans: Progress and prospects. Journal of International Environment Affairs 3: 91–107.

    Google Scholar 

  • He, F., Z. B. Wu &D. R. Qiu. 2002. Allelopathic effects between aquatic plant (Potamogeton crispus) and algae (Scenedesmus obliquus) in enclosures at Donghu Lake. Acta Hydrobiologica Sinica 26: 421–424.

    Google Scholar 

  • Herrera-Silveira, J. A., I. Medina-Gomez, R. Colli, E. Orive, M. Elliott &V. N. de Jonge. 2002. Trophic status based on nutrient concentration scales and primary producers community of tropical coastal lagoons influenced by groundwater discharges. Hydrobiologia 475-476: 91–98.

    Google Scholar 

  • Hinesly, R. L. &T. D. Jones. 1990. Phosphorus in waters from sewage sludge amended lysimeters. Environmental Pollution 65: 293–309.

    PubMed  CAS  Google Scholar 

  • Howarth, R. W., D. P. Swaney, T. J. Butler &R. Marino. 2000. Climatic control on eutrophication of the Hudson River estuary. Ecosystems 3: 210–215.

    Google Scholar 

  • Imteaz, M. A., T. Asaeda &D. A. Lockington. 2003. Modelling the effects of inflow parameters on lake water quality. Environmental Modeling and Assessment 8: 63–70.

    Google Scholar 

  • Janse, J. H. &P. J. T. M. Van Puijenbroek. 1998. Effects of eutrophication in drainage ditches. Environmental Pollution 102: 547–552.

    CAS  Google Scholar 

  • Jeppesen, E., M. Søndergaard, B. Kronvang, J. P. Jenson, L. M. Svendsen &T. L. Lauridsen. 1999. Lake and catchment management in Denmark. Hydrobiologia 395-396: 419–432.

    Google Scholar 

  • Jha, P. &S. Barat. 2003. Hydrobiological studies of Lake Mirik in Darjeeling Himalayas. J. Env. Biol. 24: 339–344.

    CAS  Google Scholar 

  • Johnson, N., C. Revenga &J. Echeverria. 2001. Managing water for people and nature. Science 292: 1071–1072.

    PubMed  CAS  Google Scholar 

  • Jones, J. G. 2001. Freshwater ecosystems structure and response. Ecotoxicology and Environmental Safety 50: 1090–2414.

    Google Scholar 

  • Jonsson, M. &B. Malmqvist. 2000. Ecosystem process rate increases with animal species richness: Evidence from leaf-eating, aquatic insects. Oikos 89: 519–523.

    Google Scholar 

  • Juttner, I., S. Sharma, B. M. Dahal, S. J. Ormerod, P. J. Chimonides &E. J. Cox. 2003. Diatoms as indicators of stream quality in the Kathmandu Valley and Middle Hills of Nepal and India. Freshwater Biology 48: 2065–2084.

    Google Scholar 

  • Kant, S. &A. K. Raina. 1990. Limnological studies of two ponds in Jammu, II. Physico-chemical parameters. J. Env. Biol. 11: 137–144.

    CAS  Google Scholar 

  • Kaul, V. 1970. Production and ecology of some macrophytes of Kashmir lakes. Hydrobiologia 12: 63–69.

    Google Scholar 

  • —,C. L. Tristal &J. K. Handoo. 1978. Distribution and production of macrophytes in some aquatic bodies of Kashmir. Pp. 313–334in J. S. Singh & B. Gopal (eds.), Glimpses of Ecology. Prakash Publishers, Jaipur.

    Google Scholar 

  • Kelly, M. G. &S. Wilson. 2004. Effect of phosphorus stripping on water chemistry and diatom ecology in an eastern lowland river. Water Research 38: 1559–1567.

    PubMed  CAS  Google Scholar 

  • Khan, F. A. 1985. Studies on primary productivity in relation to air pollution emitted by a coal-fired power plant. Ph.D. diss., Aligarh Muslim Univ.

  • Khitoliya, R. K. 2004. Environmental pollution: Management & control for sustainable development. S. Chand, New Delhi.

    Google Scholar 

  • Kleeberg, A. &M. Heidenreich. 2004. Release of nitrogen and phosphorus from macrophyte stands of summer dried out sediments of a eutrophic reservoir. Archiv für Hydrobiologie 159: 115–136.

    CAS  Google Scholar 

  • Koussouris, T. S., A. C. Diapoulis &I. T. Bertahas. 1991. Evaluation trophic status and restoration procedures of a polluted lake, Lake Kastoria, Greece. Geojournal 23: 153–161.

    Google Scholar 

  • Kufel, L. 2001. Uncoupling of chlorophyll and nutrients in lakes: Possible reasons, expected consequences. Hydrobiologia 443: 59–67.

    CAS  Google Scholar 

  • Kulaev, I. S. 1979. The biochemistry of inorganic polyphosphates. John Wiley & Sons, Wiley-Interscience Publication, New York.

    Google Scholar 

  • Kulshreshtha, S. K., R. Saxena, M. P. George, M. Srivastava &A. Tiwari. 1989. Phytoplankton of eutrophic Mansarovar reservoir of Bhopal. International Journal of Ecology & Environmental Science 15: 205–215.

    Google Scholar 

  • Lalitha, S., R. Kasthuri, D. Kalaivani, Banumathi &L. Akilandishwari. 2003. Impact of sewage disposal on quality of water near Chinthamani, Tiruchirapalli. Indian Journal of Environmental Protection 23: 1268–1271.

    CAS  Google Scholar 

  • Lande, A. 1973. Byglandsfjorden: Primary production and other limnological features in an oligotrophic Norwegian lake. Hydrobiologia 41: 335–344.

    Google Scholar 

  • Lau, S. S. S. &S. N. Lane. 2002a. Biological and chemical factors influencing shallow lake eutrophication: A long-term study. Science of the Total Environment 3: 167–181.

    Google Scholar 

  • —. 2002b. Nutrient and grazing factors in relation to phytoplankton level in a eutrophic shallow lake: The effect of low macrophyte abundance. Water Research Oxford 36: 3593–3601.

    CAS  Google Scholar 

  • Lawson, E. N. &N. E. Tonhazy. 1980. Changes in morphology and phosphate uptake patterns ofAcinetobacter calcoaceticus strains. Water SA 6: 105–112.

    Google Scholar 

  • Leupold, E. I., K. H. Schonwalder, L. W. Fritsche, M. Schlingmann, A. H. Linkies, W. Gohla & F. J. Dany. 1990. Method for making a mixture of sucrose oxidation products. German Federal Republic Patent. DE 3900677, 5 pp; A12.01.89-DE-3900677, P 19.07.90; also: AU 90-47824, CA2007550, EP378127B, JP-A 02-233691, ZA 90–194.

  • Lévêque, C. 2001. Lake and pond ecosystems. Encyclopedia of Biodiversity 3: 633–644.

    Google Scholar 

  • Likens, G. E., F. H. Bormann, R. S. Pierce, J. S. Eaton &N. M. Johnson. 1977. Biogeochemistry of a forested ecosystem. Springer-Verlag, New York.

    Google Scholar 

  • Liu, C., G. Wu, D. Yu, D. Wang &S. Xia. 2004. Seasonal changes in height, biomass and biomass allocation of two exotic aquatic plants in a shallow eutrophic lake. Journal of Freshwater Ecology 19: 41–45.

    CAS  Google Scholar 

  • Lorenz, C. M. 2003. Bioindicators for ecosystem management, with special reference to freshwater systems. Pp. 123–152in B. A. Markert, A. M. Breure & H. G. Zechmeister (eds.), Bioindicators and biomonitors: Principles, concepts and applications. Elsevier, Amsterdam.

    Google Scholar 

  • Lovett-Doust, L., J. Lovett-Doust &M. Biernacki. 1994. American wildcelery,Vallisneria americana, as a biomonitor of organic contaminants in aquatic ecosystems. Journal of Great Lakes Research 20: 333–354.

    Google Scholar 

  • Luning, K., S. J. Pang, J. M. Fernandez-Sevilla, M. Garcia-Guerrero, E. Molina-Grima, F. G. Acien-Fernandez, J. A. Sanchez-Perez &B. A. Whitton. 2002. Mass cultivation of seaweeds: Current aspects and approaches. Journal of Applied Phycology 15: 115–119.

    Google Scholar 

  • Martinez-Aragon, J. F., I. Hernandez, J. L. Perez-Liorens, R. Vazquez &J. J. Vergara. 2002. Biofiltering efficiency in removal of dissolved nutrients by three species of estuarine macroalgae cultivated with sea bass (Dicentrarchus labrax) waste waters, 1. Phosphate. Journal of Applied Phycology 14: 365–374.

    CAS  Google Scholar 

  • Meganck, M. J. J. &G. M. Faup. 1988. Enhanced biological phosphorus removal of waste waters. Biotreatment Systems 3: 111–203.

    Google Scholar 

  • Mengel, K. &E. A. Kirkby. 1996. Principles of plant nutrition. Ed 4. Panima Publishing Corp., New Delhi.

    Google Scholar 

  • Mermillod-Blondin, F., M. Gerino, M. Creuzé des Châtelliers &V. Degrange. 2002. Functional diversity among 3 detritivorous hyporheic invertebrates: An experimental study in microcosms. Journal of the North American Benthological Society 21: 132–149.

    Google Scholar 

  • Mickel, A. M. & R. G. Wetzel. 1978. Effectiveness of submerged anglosperm-epiphyte complexes on exchange of nutrients of organic carbon in littoral systems, I. Inorganic nutrients. Aquatic Botany: 303–316.

  • Misra, S. D., S. C. Bhargava &O. P. Bohra. 1975. Diurnal variation in physico-chemical factors at Padmasagar reservoir during pre-monsoon period of the year 1974. Geobios 2: 32–33.

    Google Scholar 

  • Morrison, R. T. &R. N. Boyd. 2000. Organic chemistry. Prentice Hall of India, New Delhi.

    Google Scholar 

  • Moss, B. 1988. Ecology of fresh waters: Man and medium. Ed 2. Blackwell, Oxford.

    Google Scholar 

  • —,J. Stansfield &K. Irvine, 1991. Development of daphnid communities in diatom- and cyanophyte-dominated lakes and their relevance to lake restoration by biomanipulation. J. Appl. Ecol. 28: 586–602.

    Google Scholar 

  • Muller, D. K. &D. R. Helsel. 1999. Nutrients in the nation’s water—Too much of good thing? Circular 1136. U.S. Geological Survey, Denver.

    Google Scholar 

  • Murphy, S. 2002. General information on phosphorus. City of Boulder / USGS Water Quality Monitoring. http://bcn.boulder.co.us/basin/data/NUTRIENTS/info/TP.html.

  • Nielsen, S. L., K. Sand-Jensen, J. Borum &O. Geertz-Hansen. 2002. Phytoplankton, nutrients and transparency in Danish coastal waters. Estuaries 25: 930–937.

    CAS  Google Scholar 

  • Ni, L.-Y., D. M. Wang &P. Xie. 1999. Experimental studies on the growth ofPolamogeton maackianus A. under low-light stress in highly eutrophic water. Proceedings of the 9th International Symposium on River and Lake Environments, Hungshan, China, October 9–13, 1998. Acta Hydrobiologica Sinica 23: 53–58.

    Google Scholar 

  • Notestein, S. K., T. K. Frazer, M. V. Hoyer &D. E. Canfield Jr. 2003. Nutrient limitation of periphyton in a spring-fed, coastal stream in Florida, USA. Journal of Aquatic Plant Management 41: 57–60.

    Google Scholar 

  • Opuszynski, K. &J. V. Shireman. 1995. Herbivorous fishes: Culture and use for weed management. CRC Press, Boca Raton, FL.

    Google Scholar 

  • Palmer, M., A. P. Covich, B. J. Finlay, J. Gibert, K. D. Hyde, R. K. Johnson, T. Kairesalo, S. Lake, C. R. Lovell, R. J. Naiman, C. Ricci, F. Sabater &D. Strayer. 1997. Biodiversity and ecosystem processes in freshwater sediments. Ambio 26: 571–577.

    Google Scholar 

  • Patrick, R. 1950. Biological measure of stream conditions. Sew. Industr. Wastes 22: 926–938.

    CAS  Google Scholar 

  • Pelechaty, M., D. Machowiak, A. Kostrzewski &R. Siwecki. 1997. The diversity and quality of the dominant types of habitats of the Jaroslawieckie Lake due to perennial changes of micro- and macrophytes. Morena-Prau-Wielkopolskiego-Parku-Narodowego 5: 53–59.

    Google Scholar 

  • Penelope, R. V. &R. V. Charles. 1992. Water resources and the quality of natural waters. Jones and Bartbett Publishers, London.

    Google Scholar 

  • Perkins, R. G. &G. J. C. Underwood. 2002. Partial recovery of eutrophic reservoir through managed phosphorus limitation and unmanaged macrophyte growth. Hydrobiologia 481: 74–87.

    Google Scholar 

  • Petrucio, M. M. &F. A. Esteves. 2000. Uptake rates of nitrogen and phosphorus in the water byEichhornia crassipes andSalvinia auriculata. Revista Brasileira de Biologia 60: 229–236.

    PubMed  Google Scholar 

  • Porrello, S., M. Lenzi, E. Persia, P. Tomassetti &M. G Finoia. 2003a. Reduction of aquaculture wastewater eutrophication by phytotreatment ponds system, I. Dissolved and particulate nitrogen and phosphorus. Aquaculture 219: 515–529.

    CAS  Google Scholar 

  • —,P. Tomassetti, E. Persia, M. G. Finoia &I. Mercatali. 2003b. Reduction of aquaculture wastewater eutrophication by phytotreatment ponds system, II. Nitrogen and phosphorus content in macroalgae and sediment. Aquaculture 219: 531–544.

    CAS  Google Scholar 

  • Potter, K. &Lovett-Doust, L. 2001. Site parameters and the efficacy ofVallisneria americana as a biomonitor of stressed aquatic ecosystems: Implications for widespread biomonitoring. Ecol. Mon. 11: 215–225.

    Google Scholar 

  • Prego, R., E. Orive, M. Elliot &V. N. de Jonge. 2002. Nitrogen fluxes and budget seasonality in the Ria Vigo (NW Iberian Peninsula). Hydrobiologia 475-476: 161–171.

    Google Scholar 

  • Quiros, R., A. M. Rennella, M. B. Boveri, J. J. Rosso &A. Sosnovsky. 2002. Factors affecting the structure and functioning of shallow Pampean lakes. Ecologia Austral 12: 175–185.

    Google Scholar 

  • Rabalais, N. N., J. Galloway &E. Cowling. 2002. Nitrogen in aquatic ecosystems. 2nd International Nitrogen Conference on Optimizing Nitrogen Management in Food and Energy Productions, and Environmental Change, Potomac, Maryland, USA, October 2001. Ambio 31: 102–112.

    PubMed  Google Scholar 

  • Rao, C. S. 1998. Environmental pollution control engineering. New Age International, New Delhi.

    Google Scholar 

  • Reutter, J. M. 1989. Lake Erie: Phosphorus and eutrophication. Fact Sheet 015. Ohio Sea Grant College Program, Columbus.

    Google Scholar 

  • Reynolds, C. S. 1984. The ecology of freshwater phytoplankton. Cambridge Univ. Press, Cambridge.

    Google Scholar 

  • Rogers, K. M. 2003. Stable carbon and nitrogen isotope signatures indicate recovery of marine biota from sewage pollution at Moa Point, New Zealand. Marine Pollution Bulletin 46: 821–827.

    PubMed  CAS  Google Scholar 

  • Ruley, J. E. &K. A. Rusch. 2002. An assessment of long-term post-restoration water quality trends in a shallow subtropical, urban hypereutrophic lake. Ecological Engineering 19: 265–280.

    Google Scholar 

  • Saad, M. A. H. 1973. Some limnological characteristics of the Nozh a Hydradrome, near Alexandria, Egypt. Hydrobiologia 41: 477–500.

    CAS  Google Scholar 

  • Sachoemar, S. &T. Yanagi. 1999. Seasonal variation in water quality at the northern coast of Karawang-West Java, Indonesia. Mer (Tokyo) 37: 91–101.

    CAS  Google Scholar 

  • Saxena, P. K., S. Jabeen &R. Sahai. 1988. Variation in certain physico-chemical characteristics of freshwater stream receiving industrial effluents. Geobios 15: 107–111.

    CAS  Google Scholar 

  • Schelske, C. L. 1989. Assessment of nutrient effects and nutrient limitation in Lake Okeechobee. Water Resources Bulletin 25: 1119–1130.

    CAS  Google Scholar 

  • Schindler, D. W. 1971. Light, temperature and oxygen regimes of selected lakes in the experimental lakes area, North-Western Ontario. J. Fish. Res. Bd. Canada 28: 157–169.

    Google Scholar 

  • Schnitzler, A., I. Eglin, F. Robach &M. Tremolieres. 1996. Response of aquatic macrophytes communities to levels of P and N in an old swamp of the upper Rhine plain (Eastern France). Ecologie 27: 51–61.

    Google Scholar 

  • Schulz, M. &C. Herzog. 2004. The influence of sorption processes on the phosphorus mass balance in a eutrophic German lowland river. Water, Air, & Soil Pollution 155: 291–301.

    CAS  Google Scholar 

  • Sekulic, N., V. Stojsic, L. Budakov &D. Brangovic. 1998. Begecka Jama (Serbia, Yugoslavia) in the condition of anthropogenic eutrophication. Protection of Nature 50: 537–542.

    Google Scholar 

  • Sharma, P. D. 1998. Ecology and environment. Rastogi Publications, Meerut.

    Google Scholar 

  • Shen, D. S. 2002. Study on limiting factors of water eutrophication of the network of rivers in plain. Journal of Zhejiang University (Agriculture and Life Sciences) 28: 94–97.

    CAS  Google Scholar 

  • Shimoda, M. 1984. Macrophyte communities and their significance as indicators of water quality in two ponds in the Saijo basin, Hiroshima Prefecture, Japan. Hikobia 9: 1–14.

    Google Scholar 

  • Singhal, P. K. &S. Mahto. 2004. Role of water hyacinth in the health of a tropical urban lake. J. Env. Biol. 25: 269–277.

    CAS  Google Scholar 

  • Sivaswamy, S. N. &K. S. Prasad. 1990. Population dynamics of phytoplankton along the Madras coast. J. Environ. Biol. 11: 145–162.

    Google Scholar 

  • Skei, J., P. Larsson, R. Rosenberg, P. Jonsson, M. Olsson &D. Broman. 2000. Eutrophication and contaminants in aquatic ecosystems. Ambio 29: 184–194.

    Google Scholar 

  • Smith, V. H. 2003. Eutrophication of freshwater and coastal marine ecosystems: A global problem. Environmental Science and Pollution Research 10: 126–139.

    CAS  Google Scholar 

  • Smolders, A. J. P., J. G. M. Roelofs, H. C. Den, M. Tremolieres &S. Muller. 1995. Internal eutrophication of aquatic ecosystems: Mechanisms and possible remedies. Acta Botanica Gallica 142: 707–717.

    Google Scholar 

  • Sommaruga, R., D. Conde &J. A. Casal. 1995. The role of fertilizers and detergents for eutrophication in Uruguay. Fresenius Environmental Bulletin 4: 111–116.

    CAS  Google Scholar 

  • Stojanovic, S., L. Nikilic & D. Lazic. 1998. The function of dominant hydrophytes of the Mostonga (Serbia Yugoslavia) in water quality bioindication. Pp. 425–428in Proceedings of the 27th Annual Conference of Yugoslav Water Pollution Control Society, Beograd (Yugoslavia).

  • Sundback, K., A. Miles, S. Hulth, L. Pihl, P. Engstrom, E. Selander &A. Svenson. 2003. Importance of benthic nutrient regeneration during initiation of macroalgal blooms in shallow bays. Marine Ecology 246: 115–126.

    Google Scholar 

  • Swaranlatha, N. &A. N. Rao. 1998. Ecological studies of Banjara Lake with reference to water pollution. J. Env. Biol. 19: 179–186.

    CAS  Google Scholar 

  • Teshow, M. 1970. Environment and plant response. McGraw-Hill, New York.

    Google Scholar 

  • Thiebaut, G. &S. Muller. 1998. The impact of eutrophication on aquatic macrophyte diversity in weakly mineralized streams in the Northern Vosges mountains (NE France). Biodiversity and Conservation 7: 1051–1068.

    Google Scholar 

  • Tiwari, A. 1998. Rotifers as indicators for assessment of water quality. Proc. Acad. Environ. Biol. 7: 161–166.

    Google Scholar 

  • Tracy, M., J. M. Montante, T. E. Allenson &R. A. Hough. 2003. Long-term response of aquatic macrophyte diversity and community structure to variation in nitrogen loading. Aquatic Botany 77: 43–52.

    CAS  Google Scholar 

  • Triantafyllou, G, G. Petihakis, D. Costas &A. Theodorou. 2001. Assessing marine ecosystems response to nutrient inputs. Marine Pollution Bulletin 43: 7–12.

    Google Scholar 

  • Tripathy, P. K. &S. P. Adhikary. 1990. Preliminary studies on the water pollution of river Nandira. Indian Journal of Environmental Health 32: 363–368.

    CAS  Google Scholar 

  • Trisal, C. L. &S. Kaul. 1983. Sediment composition and water inter changes and the role of macrophytes in Dal Lake, Kashmir. Internationale Revue der gesamten Hydrobiologie 68: 671–682.

    CAS  Google Scholar 

  • Vadineanu, A., S. Cristofor &G. Ignat. 1992. Phytoplankton and submerged macrophytes in the aquatic ecosystems of the Danube Delta during the last decade. Hydrobiologia 243-244: 141–146.

    CAS  Google Scholar 

  • Vaithiyanathan, P. &C. J. Richardson. 1999. Macrophyte species changes in the Everglades: Examination along a eutrophication gradient. J. Environ. Qual. 28: 1347–1358.

    CAS  Google Scholar 

  • Van Dam, H. &A. Mertens. 1993. Diatoms on herbarium macrophytes as indicators for water quality. Hydrobiologia 269-270: 437–445.

    Google Scholar 

  • Van Den Berg, M. S., M. Scheffer, E. H. Van Nes, H. Coops, N. Walz &B. Nixdorf. 1999. Dynamics and stability ofChara sp. andPotamogeton pectinatus in a shallow lake changing in eutrophication level. Hydrobiologia 408-409: 335–342.

    Google Scholar 

  • Vörösmarty, C. J., P. Green, J. Salisbury &R. B. Lammers. 2000. Global water resources: Vulnerability from climate change and population growth. Science 289: 284–288.

    PubMed  Google Scholar 

  • Vuillemin, M. H. T. 2001. Do food processing industries contribute to the eutrophication of aquatic systems. Ecotoxicology and Environmental Safety 50: 143–152.

    Google Scholar 

  • Wang, G. X., P. M. Pu, S. Z. Zhang, C. H. Hu. &W. P. Hu. 1999. The purification ability of aquatic macrophytes for eutrophic lake water in winter. China Environmental Science 19: 106–109.

    CAS  Google Scholar 

  • Wei, B., N. Sugiura &T. Maekawa. 2000. Evaluation of trophic state of eutrophicated lake and biotic response from algal community level. Environmental Technology 21: 1047–1053.

    CAS  Google Scholar 

  • Weimin, C., C. Yuwei, G Xiyun &I. Yoshida. 1997. Eutrophication of Lake Taihu and its control. International Agricultural Engineering Journal 6: 109–120.

    Google Scholar 

  • Welch, F. B. &G. D. Crooke. 1987. Lakes. Pp. 109–129in W. R. Jordan III, J. D. Aber & M. E. Gilpin (eds.), Restoration ecology: A synthetic approach to ecological research. Cambridge Univ. Press, Cambridge.

    Google Scholar 

  • Wen, L. &F. Recknagel. 2002. In situ removal of dissolved phosphorus in irrigation drainage water by planted floats: Preliminary results from growth chamber experiment. Agriculture, Ecosystems and Environment 90: 9–15.

    CAS  Google Scholar 

  • Winter, J. G. &H. C. Duthie. 2000. Epilithic diatoms as indicators of stream total N and total P concentration. Journal of the North American Benthological Society 19: 32–49.

    Google Scholar 

  • Wychera, U., P. Dirry, G A. Janauer, P. R. F. Barrett, M. P. Greaves, K. J. Murphy, A. H. Pieterse, P. M. Wade & M. Wallsten. 1990. Macrophytes of the “New Danube” (Vienna): Biological and management aspects. Pp. 249–255in Proceedings of the 8th International Symposium on Aquatic Weeds, Uppsala, Sweden, 13–17 August 1990.

  • Yin, K. 2002. Monsoonal influence on seasonal variations in nutrients and phytoplankton biomass in coastal waters of Hong Kong in the vicinity of the Pearl River estuary. Marine Ecology Progress Series 245: 111–122.

    CAS  Google Scholar 

  • Zhou, Y., J. Li, C. Song &X. Cao. 2004. Variation and possible source of potentially available phosphorus in a Chinese shallow eutrophic lake. Journal of Freshwater Ecology 19: 87–96.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khan, F.A., Ansari, A.A. Eutrophication: An ecological vision. Bot. Rev 71, 449–482 (2005). https://doi.org/10.1663/0006-8101(2005)071[0449:EAEV]2.0.CO;2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1663/0006-8101(2005)071[0449:EAEV]2.0.CO;2

Keywords

Navigation