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1. Introduction 

It was proved by Hodges and Lehmann [3] (see also Girshick and Savage 
[2]) that  if Z~, -- . ,  Z~ are independently normally distributed with known 
mean ~ and unknown variance a 2, the estimator ~0 defined by 

( i ) ~o(Z,., . . . ,  z , , ) -  i .~  ( z , - ~ ) '  
n+2 

is admissible for estimating a g with squared error as loss. This means 
that  (for fixed ~) there is no estimator ~ such that, for all a 

(2 )  E,,[~(ZI, . . . ,  Z,,)-a~]9~_Eq[~~ . . . ,  Zn ) -a ' ]  ~ , 

with strict inequality for some a. We shall see that, if ~ is unknown, 
the apparently natural estimator ~ defined by 

( 3 )  F,(Z,, . . . ,  Zn)= 1 ~ ( Z , _ 2 ) ,  , 
n + l  

with 

(4) Z =  1 ~ Z ,  
~b 

is inadmissible, in the sense that  there exists an estimator ~ such that,  
for all ~ and a ,  

(5) Ec,~[~(Z,, ..., Zn)-e]' < Ec,,[~I(Z, ..., Zn)-~']'. 

Such an estimator ~ may be defined by 

(6) ~(ZI, ..., Zn)=min I i ~,  ( z , -  ~, ), , 

where ~~ is any fixed number. 

1- -z  (z,- ~0)~} 
n + 2  

Of course this ~ will not be admissible 
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either since the admissible estimators are limits of Bayes solutions and 
so must  be analytic. I t  is interesting to observe tha t  the estimator 
defined by (6) may be obtained by first test ing the hypothesis ~=C0 at  
an appropriate significance level and using the  estimate (1) with C=~0 
if the hypothesis is accepted and the estimate (3) if the hypothesis is 
rejected. The idea of using such an est imator is not new, but  it does 
not seem to have been observed tha t  the risk of this est imator (6) is 
less than tha t  of the usual one for all parameter  values. 

The main par t  of the paper is concerned with a more general situa- 
tion involving an arbi t rary number of unknown means. This includes, 
as a special case, the situation occurring often in the analysis of variance 
when we are faced with the question of whether  to include an interac- 
tion term in the estimate of the variance. Even in this case the im- 
provement  obtained by using ~ given by (6) ra ther  than ~ seems likely 
to be slight, but  there is some hope tha t  a judicious choice of a Bayes 
solution among estimators invariant under scale may yield a substantial  
improvement when the number of unknown means is an appreciable pro- 
portion of the  number  of observations. So far, I have had no success 
with this approach, partly, I fear, because I find it hard to take the 
problem of estimating a s with quadratic loss function very seriously. 

2. Proof of the result announced in the title 

Let  X~, . . . ,  2(,, Y~, . . . ,  Y~ be independently normally distributed 
real random variables with common unknown variance o ~ and means 
given by 

( 7 )  EX,=O,  EYj=~. j  , 

where the 7]j are unknown. We consider the problem of est imating a 2, 
say, by ~8 with loss function L given by 

(8) 

(We have divided the squared error  by a 4 in order to make the loss 
function invariant  under the transformations a'-->@~, ~'-~aW s with a~O. 
For questions of admissibility this makes no difference.) I t  is tempt ing 
to t ry  to justify the estimator ~s given by 

( 9 ) ~s(XI, . . . ,  2(,,, Y,  . . . ,  Y~)= 1 Z X~ 
n + 2  

by the  following argument  (see Blackwell and Girshick [1], Ch. 1.1). The 
problem is invariant  under the transformations 
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(10) Xr--->aX~, Yr-->a(Yj § b j),  

(11) 7]f-->TD+bj, a~-->a~a I , 

(12) ~2-->a~$~, 
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so it seems reasonable to ask that  the estimator ~ should also be in- 
variant under these transformations, that  is 

(13) ~(aX1, . . . ,  aXe, a(Y~ +bl), . . . ,  a(Y~+bk)) 

=a'~(Xl, . . . ,  X,, Y ,  . . . ,  Yk). 

From this we easily conclude that  ~ must be of the form 

(14) ~o(X,, ..., X,, Y,, ..., Y~)=CE X~. 

But it is a trivial part of the result mentioned at the beginning of the 
paper that, for all parameter values, the best choice of C in (14) is 1/(n+2). 

However, we shall look at a somewhat larger class of estimators. 
Let 

(15) S =  E x :  
1 

k 

(16) T=Z Y], 
1 

let r be an arbitrary positive-valued function of a positive variable, and 
let 

(17) 

The estimator ~ is obtained from this by setting r162 given by 

(18) r u 
n + 2  

The estimators (17) are those that  depend only on the sufficient statistic 
(~,X~. Y1, " " ,  Y~) and are invariant under orthogonal transformation 
of the Y~ and scale change. We shall show that, for any r the estimator 
~* given by 

(19) ~*(X,, . . . ,  X,, Y,, . . . ,  Y~)=r ,.,S. m I (S+ T) 
\ ~-I- I" I 

where 

(20) r [r 1 ] 
n + k + 2  
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is better than ~ given by (17) in the sense that  

- L ~' J 

for all (7, a) with strict inequality for all (7, a) unless r162 
The distribution of Sly' is a central Z' distribution with n degrees of 

freedom and that  of T/~ is a non-central Z' distribution with k degrees 
of freedom and non-centrality parameter 

(22) I -  Z ~] . 
oJ 

But (see, for example, Mann [7], p. 68), we may imagine that there is 
an auxiliary random variable L distributed, independent of S, according 
to a Poisson distribution with mean I/2 such that T, given S and L, 
has a central ;~' distribution with b+2L degrees of freedom. Clearly 
the risk function of ~ or ~* depends only on ] so that we may assume 
a=l in proving (21). Then 

E[~(X,, ..., X~, Y,, ..., Y~)-ll'=E r (S+T)-I 

(23) =EE{[r  IL } 

=E {0'( S- -~T )E((S+ T)'[ L ) - 2 O (  S- -~T )E(S+TI L)+ 1}, 

since, given L, S/(S+ T) is independent of S +  T. 
But 

(24) E(S+ TIL)=n+k+2L , 

and 

(25) E((S+ T)' l L)=(n +k + 2L)(n +k + 2L+ 2) . 

Continuing with (23) we have 

E[,,(X,,  . . . ,  Xn, Y,, . . . ,  Y~)-I]' 

(26) 
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= E f (n+  k + 2L)(n+k,+2L+ 2) [r S ~ T  ) 

_} 2 } .  
n+k+2L+2 

1 ]2 
n+k+2L+2 

The desired result (21) follows since 

n+k+2L+2 

for all S](S+ T) and L=O, 1, 2, - - . .  

3. Concluding remarks 

The result of this paper is an illustration of a rather  ill-defined general 
technique. The problem we s tar t  with is invariant under a transforma- 
tion group ~ (in the present case, the group of translations and ortho- 
gonal transformations of the Yj and a scale change in all the variables 
simultaneously), and the usual procedure is best among those procedures 
invariant under ~.  To find out whether  the usual procedure is admis- 
sible it is often helpful to look for a bet ter  one in the class of procedures 
invariant under a sub-group J d ' c  ~ If ;)2 ~ is a normal ( invariant)sub- 
group of ~ the problem reduced in this way will be invariant  under 
the quotient group ~G~/yd" and unless this group is fairly complicated 
we shall not ordinarily find a procedure invariant under this group d)Z ~ 
tha t  is bet ter  than the usual one. However, if )2 ;  is not a normal sub- 
group of ~ ,  the group will not operate on the reduced problem, and 
even if the reduced problem depends continuously on a single unknown 
real parameter,  there may be a procedure invariant under ,~9"~ ~ tha t  is 
substantially better  than the usual procedure. In the present case ~ C  
consists of the orthogonal transformations of the Yj and the scale changes 
and the only unknown parameter  in the reduced problem is 2 given by 
(22). Other illustrations of this technique are given in James and Stein 
[4] and in Stein [9]. Unlike the results of the present paper, the main 
results of section 2 in [4] can be seriously recommended to the practical 
statistician. An earlier paper of Robbins [8] contains a similar idea, al- 
though there the naive procedure is admissible but, nevertheless, poor 
in many situations. 

One curious feature of the present problem is not present in any 
of the  results cited above. By analogy with an argument  of Stone [10] 
it is easy to show that,  in our (unreduced) problem, the usual procedure 
is a pointwise limit of Bayes solutions, and, furthermore,  these can be 
chosen so that  the Bayes risks approximate the constant risk of the 
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usual procedure. However, the usual procedure is not even a pointwise 
limit of Bayes procedures among those invariant under Yl, since, in the 

n o t a t i o n  of  (17), i t  fai ls  to  h a v e  t h e  p r o p e r t y  ~ ~ < pos-  
- ~ + k + 2  

sessed b y  all o f  t hese  r educed  B a y e s  p r o c e d u r e s .  

F o r  some  pos i t ive  r e su l t s  on o p t i m u m  p r o p e r t i e s  of  i n v a r i a n t  p ro -  
cedures ,  t he  r e a d e r  would  do well  to  consu l t  t h e  p a p e r s  of  Kudo  [6] a n d  

K ie f e r  [5], as  wel l  as  p a r t s  of  J a m e s  a n d  S te in  [4]. 

I a m  i n d e b t e d  to  Mr.  J .  B. Sel l iah fo r  r e m i n d i n g  me  of th is  p r o b l e m .  

STANFORD UI~'VERSITY 
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