Skip to main content

Magnaporthe oryzae and Its Pathotypes: A Potential Plant Pandemic Threat to Global Food Security

  • Chapter
  • First Online:
Plant Relationships

Abstract

Food security for the growing world population can be affected by many different socio-economic and food production variables including pest outbreaks. Plant disease epidemics historically played a significant role in the starvation and displacement of the world population. Despite huge progress made by researchers in managing diseases of staple commodities, the threat level remains very high, as disease-causing organisms adapt to new hosts, become more virulent by changing their genetic makeup, and show increased resistance against fungicide products. The history of blast disease, which affects one of the world’s staple foods, rice, goes back centuries and has been a continual problem for rice production worldwide with the recent inclusion of wheat blast. Extensive studies on the biology, pathogenicity, and population genetics of Maganaporthe oryzae (Synonym: Pyricularia oryzae), the causal agent of blast disease, have enriched our understanding of the potential threat that this pathogen poses to rice and wheat production, and therefore world food security. Based on host specificity, mating ability, and genetic relatedness, M. oryzae is divided into several subgroups or pathotypes (different crop-adapted lineages). The genome structure of M. oryzae, characterized by instability, parasexual recombination, and the presence of transposon elements, enabling this pathogen to evolve rapidly and jump from one host to another, has raised real concerns for scientists, growers, and food policy makers. All available options such as forecasting and mapping of disease and pathogen race distribution, early and reliable quick diagnostics, biological and chemical control measures, inclusion of cultivars with resistance genes, and development of blast-resistant variety using CRISPR-Cas genome editing should be considered and deployed as a package for successful control of M. oryzae.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abed-Ashtiani F, Arzanlou M, Nasehi A, Kadir J, Vadamalai G, Azadmard-Damirchi S (2018) Plant tonic, a plant-derived bioactive natural product, exhibits antifungal activity against rice blast disease. Ind Crop Prod 112:105–112

    Article  CAS  Google Scholar 

  • Adipala E (1992) Seed-borne fungi of finger millet. East Afr Agric Forest J 57:173–176

    Article  Google Scholar 

  • Agrios G (2005) Plant Pathology, 5th edn. Academic Press, p 952

    Google Scholar 

  • AGROFIT (2019) Sistema de agrotóxicos fitossanitários. Available at: http://www.agricultura.gov.br/assuntos/insumos-agropecuarios/insumos agricolas/agrotoxicos/agrofit. Accessed 15 Dec 2021

  • Ahloowalia BS, Maluszynski M, Nichterlein K (2004) Global impact of mutation-derived varieties. Euphytica 135(2):187–204

    Article  Google Scholar 

  • Ali H, Nadarajah K (2014) Evaluating the efficacy of Trichoderma spp and Bacillus substilis as biocontrol agents against Magnaporthe grisea in rice. Aus J Crop Sci 8(9):1324–1335

    Google Scholar 

  • Amruta N, Kumar MP, Puneeth ME, Sarika G, Kandikattu HK, Vishwanath K, Narayanaswamy S (2018) Exploring the potentiality of novel rhizospheric bacterial strains against the rice blast fungus Magnaporthe oryzae. Plant Pathol J 34(2):126

    Article  CAS  Google Scholar 

  • Anh VL, Anh NT, Tagle AG, Vy TTP, Inoue Y, Takumi S, Chuma I, Tosa Y (2015) Rmg8, a new gene for resistance to Triticum isolates of Pyricularia oryzae in hexaploid wheat. Phytopatholpgy 105:1568–1572

    Article  CAS  Google Scholar 

  • Anh VL, Inoue Y, Asuke S, Vy TTP, Anh NT, Wang S, Chuma I, Tosa Y (2018) Rmg8 and Rmg7, wheat genes for resistance to the wheat blast fungus, recognize the same avirulence gene AVR-Rmg8. Mol Plant Pathol 19:1252–1256

    Article  CAS  Google Scholar 

  • Arazoe T, Miyoshi K, Yamato T, Ogawa T, Ohsato S, Arie T, Kuwata S (2015) Tailormade CRISPR/Cas system for highly efficient targeted gene replacement in the rice blast fungus. Biotechnol Bioeng 112:2543–2549

    Article  CAS  Google Scholar 

  • Ashikawa I, Hayashi N, Yamane H, Kanamori H, Wu J, Matsumoto T, Ono K, Yano M (2008) Two adjacent nucleotide-binding site-leucine-rich repeat class genes are required to confer Pikm specific rice blast resistance. Genetics 180:2267–2276

    Article  CAS  Google Scholar 

  • Ashkani S, Rafii MY, Shabanimofrad M, Ghasemzadeh A, Ravanfar SA, Latif MA (2016) Molecular progress on the mapping and cloning of functional genes for blast disease in rice (Oryza sativa L.): Current status and future considerations. Crit Rev Biotechnol 36:353–367

    Article  CAS  Google Scholar 

  • Asibi AE, Chai Q, Coulter JA (2019) Rice blast: A disease with implications for global food security. Agronomy 9(8):451

    Article  CAS  Google Scholar 

  • Atugala DM, Deshappriya N (2015) Effect of endophytic fungi on plant growth and blast disease incidence of two traditional rice varieties. J Natl Sci Found 43(2)

    Google Scholar 

  • Averna-Sacca R (1912) “Brusone” do arroz. L Alongi 13a:291–302

    Google Scholar 

  • Avila-Adame C, Koller W (2003) Characterization of spontaneous mutants of Magnaporthe grisea expressing stable resistance to the Qo-inhibiting fungicide azoxystrobin. Curr Genet 42:332–338

    Article  CAS  Google Scholar 

  • Awla HK, Kadir J, Othman R, Rashid TS, Wong MY (2016) Bioactive compounds produced by Streptomyces sp. isolate UPMRS4 and antifungal activity against Pyricularia oryzae. Am J Plant Sci 7(07):1077

    Article  CAS  Google Scholar 

  • Badaruddin M, Holcombe LJ, Wilson RA, Wang ZY, Kershaw MJ, Talbot NJ (2013) Glycogen metabolic genes are involved in trehalose-6-phosphate synthase-mediated regulation of pathogenicity by the rice blast fungus Magnaporthe oryzae. PLoS Pathog 9(10):e1003604

    Article  Google Scholar 

  • Barea G, Toledo J (1996) Identificación y zonificación de piricularia o bruzone (Pyricularia oryzae) en el cultivo del trigo en el Dpto. Centro de Investigación Agrícola Tropical. Informe Tecnico. Proyecto de Investigacion Trigo. Santa Cruz de la Sierra. pp. 76–86

    Google Scholar 

  • Becker J, Liermann JC, Opatz T, Anke H, Thines E (2012) GKK1032A 2, a secondary metabolite from Penicillium sp. IBWF-029-96, inhibits conidial germination in the rice blast fungus Magnaporthe oryzae. J Antibiot 65(2):99–102

    Article  CAS  Google Scholar 

  • Bhowmik P, Ellison E, Polley B, Bollina V, Kulkarni M, Ghanbarnia K, Song H, Gao C, Voytas DF, Kagale S (2018) Targeted mutagenesis in wheat microspores using CRISPR/Cas9. Sci Rep 8(1):1–10

    Article  CAS  Google Scholar 

  • Böhnert HU, Fudal I, Dioh W, Tharreau D, Notteghem JL, Lebrun MH (2004) A putative polyketide synthase/peptide synthetase from Magnaporthe grisea signals pathogen attack to resistant rice. Plant Cell 16(9):2499–2513

    Article  Google Scholar 

  • Boukaew S, Prasertsan P (2014) Suppression of rice sheath blight disease using a heat stable culture filtrate from Streptomyces philanthi RM-1-138. Crop Prot 61:1–10

    Article  Google Scholar 

  • Bryan GT, Wu KS, Farrall L, Jia Y, Hershey HP, McAdams SA, Faulk KN, Donaldson GK, Tarchini R, Valent B (2000) A single amino acid difference distinguishes resistant and susceptible alleles of the rice blast resistance gene Pi-ta. Plant Cell 12:2033–2046

    CAS  Google Scholar 

  • Buatong J, Rukachaisirikul V, Sangkanu S, Surup F, Phongpaichit S (2019) Antifungal metabolites from marine-derived Streptomyces sp. AMA49 against Pyricularia oryzae. J Pure Appl Microbiol 13(2):653–665

    Article  Google Scholar 

  • Burnett F (1949) Report on agriculture in Malaya for the year 1947, pp 87

    Google Scholar 

  • Büschges R, Hollricher K, Panstruga R, Simons G, Wolter M, Frijters A (1997) The barley mlo gene: A novel control element of plant pathogen resistance. Cell 88:695–705

    Article  Google Scholar 

  • Cabrera MG, Gutiérrez S (2007) Primer registro de Pyricularia grisea en cultivos de trigo del NE de Argentina. Page 60 in: Jornada de Actualización en Enfermedades de Trigo. IFSC Press, Lavallol, Buenos Aires

    Google Scholar 

  • Callaway E (2016) Devastating wheat fungus appears in Asia for the first time. Nature 532:421–422

    Article  Google Scholar 

  • Cao N, Chen Y, Ji ZJ, Zeng YX, Yang CD, Liang Y (2019) Recent progress in molecular mechanism of rice blast resistance. Chin J Rice Sci 33(6):489–498. (in Chinese with English abstract)

    CAS  Google Scholar 

  • Cardoso CAA, Reis EM, Moreira EN (2008) Development of a warning system for wheat blast caused by Pyricularia grisea. Summa Phytopathol 34:216–221

    Article  Google Scholar 

  • Castroagudín VL, Ceresini PC, de Oliveira SC, Reges JT, Maciel JLN, Bonato AL, Dorigan AF, McDonald BA (2015) Resistance to QoI fungicides is widespread in Brazilian populations of the wheat blast pathogen Magnaporthe oryzae. Phytopathology 105(3):284–294

    Article  Google Scholar 

  • Castroagudín VL, Moreira SI, Pereira DA, Moreira SS, Brunner PC, Maciel JLN, Crous PW, McDonald BA, Alves E, Ceresini PC (2016) Pyricularia graminis-tritici, a new Pyricularia species causing wheat blast. Pers: Mol Phylogeny Evol Fungi 37:199

    Google Scholar 

  • Castroagudín VL, Danelli A, Moreira SI, Reges JTA, Carvalho G, Maciel JLN, Bonato ALV, Forcelini CA, Alves E, McDonald B, Croll D (2017) The wheat blast pathogen Pyricularia graminis-tritici has complex origins and a disease cycle spanning multiple grass hosts. bioRxiv:203455. Accessed 14 Dec 2021

    Google Scholar 

  • Cavara F (1892) Ulteriore contribuzione alla micologia lombarda. Instituto della R Università di Pavia 2:207–292

    Google Scholar 

  • Ceresini PC, Castroagudín VL, Rodrigues FA, Rios JA, Aucique Pérez CE, Moreira SI, Alves E, Croll D, Maciel JL (2018) Wheat blast: past, present, and future. Annu Rev Phytopathol 56:427–456

    Article  CAS  Google Scholar 

  • Ceresini PC, Castroagudín VL, Rodrigues FÁ, Rios JA, Aucique-Pérez CE, Moreira SI, Croll D, Alves E, De Carvalho G, Maciel JL, McDonald BA (2019) Wheat blast: from its origins in South America to its emergence as a global threat. Mol Plant Pathol 20(2):155–172

    Article  Google Scholar 

  • Cesari S, Thilliez G, Ribot C, Chalvon V, Michel C, Jauneau A, Rivas S, Alaux L, Kanzaki H, Okuyama Y, Morel JB, Fournier E, Tharreau D, Terauchi R, Kroj T (2013) The rice resistance protein pair RGA4/RGA5 recognizes the Magnaporthe oryzae effectors AVR-Pia and AVR1-CO39 by direct binding. Plant Cell 25(4):1463–1481

    Article  CAS  Google Scholar 

  • Chaiharn M, Theantana T, Pathom-Aree W (2020) Evaluation of biocontrol activities of Streptomyces spp. against rice blast disease fungi. Pathogens 9(2):126

    Article  CAS  Google Scholar 

  • Chakraborty M, Mahmud NU, Muzahid ANM, Rabby SF, Islam T (2020a) Oligomycins inhibit Magnaporthe oryzae Triticum and suppress wheat blast disease. PLoS One 15(8):e0233665

    Article  CAS  Google Scholar 

  • Chakraborty M, Mahmud NU, Gupta DR, Tareq FS, Shin HJ, Islam T (2020b) Inhibitory effects of linear lipopeptides from a marine Bacillus subtilis on the wheat blast fungus Magnaporthe oryzae Triticum. Front Microbiol 11:665

    Article  Google Scholar 

  • Chakraborty M, Mahmud NU, Ullah C, Rahman M, Islam T (2021) Biological and biorational management of blast diseases in cereals caused by Magnaporthe oryzae. Crit Rev Biotechnol 18:1–29

    Google Scholar 

  • Chaloner TM, Gurr SJ, Bebber DP (2021) Plant pathogen infection risk tracks global crop yields under climate change. Nat Clim Chang 11(8):710–715

    Article  Google Scholar 

  • Chakraborty M, Rabby SMF, Gupta DR, Rahman M, Paul SK, Mahmud NU, Rahat AAM, Jankuloski L, Islam T (2022) Natural protein kinase inhibitors staurosporine and chelerythrine suppress wheat blast disease caused by Magnaporthe oryzae Triticum. Microorganisms 10(6):1186

    Article  CAS  Google Scholar 

  • Chen X, Ronald PC (2011) Innate immunity in rice. Trends Plant Sci 16(8):451–459

    Article  CAS  Google Scholar 

  • Chen XW, Shang JJ, Chen DX, Lei CL, Zou Y, Zhai WX, Liu GZ, Xu JC, Ling ZZ, Cao G, Ma BT, Wang YP, Zhao XF, Li SG, Zhu LH (2006) A B-lectin receptor kinase gene conferring rice blast resistance. Plant J 46(5):794–804

    Article  CAS  Google Scholar 

  • Chen DX, Chen XW, Wang YP, Zhu LH, Li SG (2010) Genetic transformation of rice with Pi-d2 gene enhances resistance to rice blast fungus Magnaporthe Oryzae. Rice Sci 17:19–27

    Article  CAS  Google Scholar 

  • Chen J, Shi YF, Liu WZ, Chai RY, Fu YP, Zhuang JY, Wu JL (2011) A Pid 3 allele from rice cultivar Gumei 2 confers resistance to Magnaporthe oryzae. J Genet Genom 38(5):209–216

    Article  CAS  Google Scholar 

  • Chen B, Gilbert LA, Cimini BA, Schnitzbauer J, Zhang W, Li GW, Park J, Blackburn EH, Weissman JS, Qi LS, Huang B (2014) Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell 156:373

    Article  CAS  Google Scholar 

  • Chen J, Peng P, Tian JS, He YG, Zhang LP, Liu ZX, Yin DD, Zhang ZH (2015) Pike, a rice blast resistance allele consisting of two adjacent NBS-LRR genes, was identified as a novel allele at the Pik locus. Mol Breed 35:117

    Article  CAS  Google Scholar 

  • Chen WC, Chiou TY, Delgado AL, Liao CS (2019) The control of rice blast disease by the novel biofungicide formulations. Sustainability 11(12):3449

    Article  CAS  Google Scholar 

  • Chen Z, Zhao L, Chen W, Dong Y, Yang C, Li C, Xu H, Gao X, Chen R, Li L, Xu Z (2020) Isolation and evaluation of Bacillus velezensis ZW-10 as a potential biological control agent against Magnaporthe oryzae. Biotechnol Biotechnol Equip 34(1):714–724

    Article  CAS  Google Scholar 

  • Choi J, Park SY, Kim B-R, Roh JH, Oh IS, Han SS, Lee YH (2013) Comparative analysis of pathogenicity and phylogenetic relationship in Magnaporthe grisea species complex. PLoS One 8:e57196

    Article  CAS  Google Scholar 

  • Chujo T, Miyamoto K, Shimogawa T, Shimizu T, Otake Y, Yokotani N, Nishizawa Y, Shibuya N, Nojiri H, Yamane H, Minami E (2013) OsWRKY28, a PAMP-responsive transrepressor, negatively regulates innate immune responses in rice against rice blast fungus. Plant Mol Biol 82:23–37

    Article  CAS  Google Scholar 

  • Chutrakul C, Boonruangprapa T, Suvannakad R, Isaka M, Sirithunya P, Toojinda T, Kirtikara K (2009) Ascherxanthone B from Aschersonia luteola, a new antifungal compound active against rice blast pathogen Magnaporthe grisea. J Appl Microbiol 107(5):1624–1631

    Article  CAS  Google Scholar 

  • Coelho MDO, Torres GM, Cecon PR, Santana FM (2016) Sowing date reduces the incidence of wheat blast disease. Pesqui Agropecu Bras 51:631–637

    Article  Google Scholar 

  • Collemare J, Pianfetti M, Houlle AE, Morin D, Camborde L, Gagey MJ, Barbisan C, Fudal I, Lebrun MH, Böhnert HU (2008) Magnaporthe grisea avirulence gene ACE1 belongs to an infection-specific gene cluster involved in secondary metabolism. New Phytol 179(1):196–208

    Article  CAS  Google Scholar 

  • Consolo VF, Cordo CA, Salerno GL (2005) Mating type distribution and fertility status in Magnaporthe grisea populations from Argentina. Mycopathologia 160:285–290

    Article  CAS  Google Scholar 

  • Couch BC, Kohn LM (2002) A multilocus gene genealogy concordant with host preference indicates segregation of a new species, Magnaporthe oryzae, from M. grisea. Mycologia 94:683–693

    Article  CAS  Google Scholar 

  • Couch BC, Fudal I, Lebrun M-H, Tharreau D, Valent B, van Kim P, Notteghem J-L, Kohn LM (2005) Origins of host-specific populations of the blast pathogen Magnaporthe oryzae in crop domestication with subsequent expansion of pandemic clones on rice and weeds of rice. Genetics 170:613–630

    Article  CAS  Google Scholar 

  • Cruz CD, Valent B (2017) Wheat blast disease: danger on the move. Trop Plant Pathol 42:210–222

    Article  Google Scholar 

  • Cruz MFA, Debona D, Rios JA, Barros EG, Rodrigues FA (2015) Potentiation of defense-related gene expression by silicon increases wheat resistance to leaf blast. Trop Plant Pathol 40:394–400

    Article  Google Scholar 

  • Cruz CD, Magarey RD, Christie DN, Fowler GA, Fernandez JM, Bockus WW, Valent B, Stack JP (2016a) Climate suitability for Magnaporthe oryzae Triticum pathotype in the United States. Plant Dis 100:1979–1987

    Article  Google Scholar 

  • Cruz CD, Peterson GL, Bockus WW, Kankanala P, Dubcovsky J, Jordan KW, Akhunov E, Chumley F, Baldelomar FD, Valent B (2016b) The 2NS translocation from Aegilops ventricosa confers resistance to the Triticum pathotype of Magnaporthe oryzae. Crop Sci 56:990–1000

    Article  CAS  Google Scholar 

  • Cruz-Mireles N, Eseola AB, Osés-Ruiz M, Ryder LS, Talbot NJ (2021a) From appressorium to transpressorium—Defining the morphogenetic basis of host cell invasion by the rice blast fungus. PLoS Pathog 17(7):e1009779

    Article  CAS  Google Scholar 

  • Cruz-Mireles N, Eisermann I, Garduño-Rosales M, Molinari C, Ryder LS, Tang B, Yan X, Talbot NJ (2021b) The biology of invasive growth by the rice blast fungus Magnaporthe oryzae. In: Jacob S (ed) Magnaporthe oryzae: Methods in Molecular Biology, Humana, vol 23562021. New York, NY, pp 19–40

    Chapter  Google Scholar 

  • Curtis H, Noll U, Störmann J, Slusarenko AJ (2004) Broad-spectrum activity of the volatile phytoanticipin allicin in extracts of garlic (Allium sativum L.) against plant pathogenic bacteria, fungi and Oomycetes. Physiol Mol Plant Pathol 65(2):79–89

    Article  CAS  Google Scholar 

  • Dai MD, Li Y, Sun LX, Lin FC, Liu XH (2021) Isolation and functional analysis of effector proteins of Magnaporthe oryzae. In: Jacob S (ed) Magnaporthe oryzae: Methods in Molecular Biology, vol 23562021. Humana, New York, NY, pp 199–209

    Chapter  Google Scholar 

  • Das A, Soubam D, Singh PK, Thakur S, Singh NK, Sharma TR (2012) A novel blast resistance gene, Pi54rh cloned from wild species of rice, Oryza rhizomatis confers broad spectrum resistance to Magnaporthe oryzae. Funct Integr Genomic 12:215–228

    Article  CAS  Google Scholar 

  • David T, Claudia G, Michael D (2012) Rice blast. Am Phytol Soc 10:1094

    Google Scholar 

  • Dean RA (1997) Signal pathways and appressorium morphogenesis. Annu Rev Phytopathol 35:211–234

    Article  CAS  Google Scholar 

  • Delteil A, Gobbato E, Cayrol B, Estevan J, Michel-Romiti C, Dievart A, Kroj T, Morel JB (2016) Several wall-associated kinases participate positively and negatively in basal defense against rice blast fungus. BMC Plant Biol 16:17

    Article  Google Scholar 

  • Deng Y, Zhai K, Xie Z, Yang D, Zhu X, Liu J, Wang X, Qin P, Yang Y, Zhang G et al (2017) Epigenetic regulation of antagonistic receptors confers rice blast resistance with yield balance. Science 355:962–965

    Article  CAS  Google Scholar 

  • Devanna NB, Vijayan J, Sharma TR (2014) The blast resistance gene Pi54 of cloned from Oryza officinalis interacts with Avr-Pi54 through its novel non-LRR domains. PLoS One 9:e104840

    Article  Google Scholar 

  • Dorigan AF, Carvalho G, de Poloni NM, Negrisoli MM, Maciel JLN, Ceresini PC (2019) Resistance to triazole fungicides in Pyricularia species associated with invasive plants from wheat fields in Brazil. Acta Sci Agron 41:e39332

    Article  Google Scholar 

  • Dunbar AR (1969) The annual crop loss of Uganda. East African Literature Bureau, Dar es Salaam

    Google Scholar 

  • Duveiller E, He X, Singh PK (2016) Wheat blast: An emerging disease in South America potentially threatening wheat production. In: Bonjean A, van Ginkel M (eds) World Wheat Book: A History of Wheat, vol 3. Lavoisier, Paris, pp 1107–1122

    Google Scholar 

  • Engelmeier D, Hadacek F, Pacher T, Vajrodaya S, Greger H (2000) Cyclopenta [b] benzofurans from Aglaia species with pronounced antifungal activity against rice blast fungus (Pyricularia grisea). J Agric Food Chem 48(4):1400–1404

    Article  CAS  Google Scholar 

  • Eseola AB, Ryder LS, Osés-Ruiz M, Findlay K, Yan X, Cruz-Mireles N, Molinari C, Garduño-Rosales M, Talbot NJ (2021) Investigating the cell and developmental biology of plant infection by the rice blast fungus Magnaporthe oryzae. Fungal Gen Biol 18:103562

    Article  Google Scholar 

  • FAO (2003) Legislation on water users’ organization: A comparative analysis. Available at: http://www.fao.org. Accessed 10 Dec 2021

  • FAO (2009) How to feed the world in 2050. Food and Agriculture Organisation, Rome, p 35

    Google Scholar 

  • FAO (2011) The state of the world’s land and water resources for food and agriculture (SOLAW) managing systems at risk. Available at: http://faostat.fao.org Accessed 10 Dec 2021

  • Farman ML, Eto Y, Nakao T, Tosa Y, Nakayashiki H, Mayama S, Leong SA (2002) Analysis of the structure of the AVR1-CO39 avirulence locus in virulent rice-infecting isolates of Magnaporthe grisea. Mol Plant-Microbe Interact 15(1):6–16

    Article  CAS  Google Scholar 

  • Farman M, Peterson G, Chen L, Starnes J, Valent B, Bachi P, Murdock L, Hershman D, Pedley K, Fernandes JM, Bavaresco J (2017) The Lolium pathotype of Magnaporthe oryzae recovered from a single blasted wheat plant in the United States. Plant Dis 101(5):684–692

    Article  CAS  Google Scholar 

  • Feng W, Yin Z, Wu H, Liu P, Liu X, Liu M, Yu R, Gao C, Zhang H, Zheng X, Wang P (2021) Balancing of the mitotic exit network and cell wall integrity signaling governs the development and pathogenicity in Magnaporthe oryzae. PLoS Pathog 17(1):e1009080

    Article  CAS  Google Scholar 

  • Fernandes JMC, Pavan W, Hölbig CA, Karrei M, de Vargas F, Bavaresco JLB, Lazzaretti AT, Tsukahara RY (2017) A weather-based model for predicting early season inoculum build-up and spike infection by the wheat blast pathogen. Trop Plant Pathol 42:230–237

    Article  Google Scholar 

  • Filippi MCC, Da Silva GB, Silva-Lobo VL, Côrtes MVC, Moraes AJG, Prabhu AS (2011) Leaf blast (Magnaporthe oryzae) suppression and growth promotion by rhizobacteria on aerobic rice in Brazil. Biol Control 58(2):160–166

    Article  Google Scholar 

  • Fisher MC, Henk DA, Briggs CJ, Brownstein JS, Madoff LC, McCraw SL, Gurr SJ (2012) Emerging fungal threats to animal, plant and ecosystem health. Nature 484(7393):186–194

    Article  CAS  Google Scholar 

  • Fisher MC, Hawkins NJ, Gurr SJ (2018) Worldwide emergence of resistance to antifungal drugs challenges human health and food security. Science 360(6390):739–742

    Article  CAS  Google Scholar 

  • Fisher MC, Gurr SJ, Cuomo CA, Blehert DS, Jin H, Stukenbrock EH, Stajich JE, Kahmann R, Boone C, Denning DW, Gow NAR, Klein BS, Kronstad JW, Sheppard DC, Taylor JW, Wright GD, Heitman J, Casadevall A, Cowen LE (2020) Threats posed by the fungal kingdom to humans, wildlife, and agriculture. MBio 11(3):e00449–e00420

    Article  Google Scholar 

  • Flor H (1942) Inheritance of pathogenicity in Melampsora lini. Phytopathology 32:653–669

    Google Scholar 

  • Flor H (1956) The complementary genic systems in flax and flax rust. Adv Genetics 8:29–54

    Article  Google Scholar 

  • Froyd JD, Paget CJ, Guse LR, Dreikorn BA, Pafford JL (1976) Tricyclazole: A new systemic fungicide for control of Pyricularia oryzae on rice. Phytopathology 66(1):135–131

    Google Scholar 

  • Fry FH, Okarter N, Baynton-Smith C, Kershaw MJ, Talbot NJ, Jacob C (2005) Use of a substrate/alliinase combination to generate antifungal activity in situ. J Agric Food Chem 53(3):574–580

    Article  CAS  Google Scholar 

  • Fukuoka S, Saka N, Koga H, Ono K, Shimizu T, Ebana K, Hayashi N, Takahashi A, Hirochika H, Okuno K (2009) Loss of function of a proline-containing protein confers durable disease resistance in rice. Science 325:998–1001

    Article  CAS  Google Scholar 

  • Fukuoka S, Yamamoto SI, Mizobuchi R, Yamanouchi U, Ono K, Kitazawa N, Yasuda N, Fujita Y, Nguyen TT, Koizumi S, Sugimoto K, Matsumoto T, Yano M (2014) Multiple functional polymorphisms in a single disease resistance gene in rice enhance durable resistance to blast. Sci Rep 4:1–7

    Google Scholar 

  • Giraldo MC, Dagdas YF, Gupta YK, Mentlak TA, Yi M, Martinez-Rocha AL, Saitoh H, Terauchi R, Talbot NJ, Valent B (2013) Two distinct secretion systems facilitate tissue invasion by the rice blast fungus Magnaporthe oryzae. Nat Commun 4(1):1–2

    Article  Google Scholar 

  • Gladieux P, Condon B, Ravel S, Soanes D, Maciel JLN, Nhani A, Chen L, Terauchi R, Lebrun MH, Tharreau D, Mitchell T (2018) Gene flow between divergent cereal- and grass-specific lineages of the rice blast fungus Magnaporthe oryzae. MBio 9:e01219–e01217

    Article  Google Scholar 

  • Gnanamanickam SS, Mew TW (1992) Biological control of blast disease of rice (Oryza sativa L.) with antagonistic bacteria and its mediation by a Pseudomonas antibiotic. Jpn J Phytopathol 58(3):380–385

    Article  Google Scholar 

  • Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Pretty J, Robinson S, Thomas SM, Toulmin C (2010) Food security: The challenge of feeding 9 billion people. Science 327:812–818

    Article  CAS  Google Scholar 

  • Goto K (1955) History of the blast disease and changes in methods of control. Agricultural Improvement Bureau, Ministry of Agriculture and Forestry, Japan 5:1–2

    Google Scholar 

  • Goulart ACP, de Paiva FA (1990) Transmission of Pyricularia oryzae by wheat (Triticum aestivum) seeds. Fitopatol Bras 15:359–362

    Google Scholar 

  • Goulart ACP, de Paiva FA (1992) Incidence of blast (Pyricularia oryzae) in different wheat cultivars under field conditions. Fitopatol Bras 17:321–325. (in Portuguese)

    Google Scholar 

  • Goulart ACP, Sousa PG, Urashima AS (2007) Damages in wheat caused by infection of Pyricularia grisea. Summa Phytopathol 33:358–363

    Article  Google Scholar 

  • Grand X, Espinoza R, Michel C, Cros S, Chalvon V, Jacobs J, Morel JB (2012) Identification of positive and negative regulators of disease resistance to rice blast fungus using constitutive gene expression patterns. Plant Biotechnol J 10(7):840–850

    Article  CAS  Google Scholar 

  • Guimaraes EP, Correa-Victoria F (1997) Use of recurrent selection for develop resistance Pyricularria grisea Sacc. resistance in rice. In: Guimares EP (ed) Advances in Rice Population Improvement. CIAT, Cali, pp 165–175

    Google Scholar 

  • Guo H, Du Q, Xie Y, Xiong H, Zhao L, Gu J, Zhao S, Song X, Islam T, Liu L (2021) Identification of rice blast loss-of-function mutant alleles in the wheat genome as a new strategy for wheat blast resistance breeding. Front Genet 12:705

    Article  Google Scholar 

  • Gupta DR, Avila CSR, Win J, Soanes DM, Ryder LS, Croll D, Bhattacharjee P, Hossain MS, Mahmud NU, Mehbub MS, Surovy MZ, Rahman MM, Talbot NJ, Kamoun S, Islam MT (2019) Cautionary notes on use of the MoT3 diagnostic assay for Magnaporthe oryzae wheat and rice blast isolates. Phytopathology 109(4):504

    Article  CAS  Google Scholar 

  • Gupta DR, Surovy MZ, Mahmud NU, Chakraborty M, Paul SK, Hossain M, Bhattacharjee P, Mehebub MS, Rani K, Yeasmin R, Rahman M, Islam MT (2020) Suitable methods for isolation, culture, storage and identification of wheat blast fungus Magnaporthe oryzae Triticum pathotype. Phytopathol Res 2(1):1–3

    Google Scholar 

  • Gupta DR, Khanom S, Rohman M, Hasanuzzaman M, Surovy MZ, Mahmud NU, Islam M, Shawon AR, Rahman M, Abd-Elsalam KA, Islam T (2021) Hydrogen peroxide detoxifying enzymes show different activity patterns in host and non-host plant interactions with Magnaporthe oryzae Triticum pathotype. Physiol Mol Biol Plants 27(9):2127–2139

    Article  CAS  Google Scholar 

  • Hamer JE, Talbot NJ (1998) Infection-related development in the rice blast fungus Magnaporthe grisea. Curr Opin Microbial 1(6):693–697

    Article  CAS  Google Scholar 

  • Hamer JE, Howard RJ, Chumley FG, Valent B (1988) A mechanism for surface attachment in spores of a plant pathogenic fungus. Science 239:288–290

    Article  CAS  Google Scholar 

  • Haque E, Taniguchi H, Hassan MM, Bhowmik P, Karim MR, Śmiech M, Zhao K, Rahman M, Islam T (2018) Application of CRISPR/Cas9 genome editing technology for the improvement of crops cultivated in tropical climates: recent progress, prospects, and challenges. Front Plant Sci 9:617

    Article  Google Scholar 

  • Harmon PF, Dunkle LD, Latin R (2003) A rapid PCR-based method for the detection of Magnaporthe oryzae from infected perennial ryegrass. Plant Dis 87(9):1072–1076

    Article  CAS  Google Scholar 

  • Harsonowati W, Astuti RI, Wahyudi AT (2017) Leaf blast disease reduction by rice-phyllosphere actinomycetes producing bioactive compounds. J Gen Plant Pathol 83(2):98–108

    Article  CAS  Google Scholar 

  • Hayashi K, Yoshida H (2009) Refunctionalization of the ancient rice blast disease resistance gene Pit by the recruitment of a retrotransposon as a promoter. Plant J 57(3):413–425

    Article  CAS  Google Scholar 

  • Hayashi N, Inoue H, Kato T, Funao T, Shirota M, Shimizu T, Kanamori H, Yamane H, Hayano-Saito Y, Matsumoto T, Yano M, Takatsuji H (2010) Durable panicle blast-resistance gene Pb1 encodes an atypical CC-NBS-LRR protein and was generated by acquiring a promoter through local genome duplication. Plant J 64(3):498–510

    Article  CAS  Google Scholar 

  • Hebert TT (1971) The perfect stage of Pyricularia grisea. Phytopathology 61(1):83–87

    Article  Google Scholar 

  • Hirata K, Kusba M, Chuma I, Osue J, Nakayashiki H, Mayama S, Tosa Y (2007) Speciation in Pyricularia inferred from multilocus phylogenetic analysis. Mycol Res 111:799–808

    Article  CAS  Google Scholar 

  • Hosahatti R, Jeevan B, Mishra KK, Subbanna ARNS, Kant L (2021) Blastd: Historical importance, distribution, and host infectivity across cereal crops. In: Nayaka SC, Hosahatti R, Prakash G, Satyavathi CT, Sharma R (eds) Blast Disease of Cereal Crops. Springer, Cham, pp 1–13

    Google Scholar 

  • Hua L, Wu J, Chen C, Wu W, He X, Lin F, Wang L, Ashikawa I, Matsumoto T, Wang L, Pan Q (2012) The isolation of Pi1, an allele at the Pik locus which confers broad spectrum resistance to rice blast. Theor Appl Genet 125:1047–1055

    Article  CAS  Google Scholar 

  • Igarashi S (1990) Update on wheat blast (Pyricularia oryzae) in Brazil. In: Saunders D (eds) Proceedings of the International Conference on Wheat for the Nontraditional Warm Areas. Foz do Iguaçu, Mexico DF, CIMMYT, pp 480–483

    Google Scholar 

  • Igarashi S, Utiamada CM, Igarashi LC, Kazuma AH, Lopes RS (1986) Occurrence of Pyrcularia sp. in wheat (Triticum aestivum L.) in the State of Paraná. Brazil Fitopatol Bras 11:351–352

    Google Scholar 

  • Inoue Y, Vy TTP, Yoshida K, Asano H, Mitsuoka C, Asuke S, Anh VL, Cumagun CJR, Chuma I, Terauchi R, Kato K, Mitchell T, Valent B, Farman M, Tosa Y (2017) Evolution of the wheat blast fungus through functional losses in a host specificity determinant. Science 357:80–83

    Article  CAS  Google Scholar 

  • International Maize and Wheat Improvement Center - CIMMYT Wheat Program (2016) Understanding and Managing the Threat of Wheat Blast in South Asia, South America, and Beyond. Mexico, CIMMYT, pp 4. Available at: https://hdl.handle.net/10883/16947 Accessed 15 Dec 2021

  • Islam MT (2018) A new pathotype of Magnaporthe oryzae causing devastating wheat blast disease in multiple continents. Phytopathology 108(S2):16

    Google Scholar 

  • Islam T (2019) CRISPR-Cas technology in modifying food crops. CAB Rev 14:50

    Google Scholar 

  • Islam MT, Kamoun S (2018) Open science and international collaboration to tackle the fearsome wheat blast in Asia and beyond. Phytopathology 108(S1):276

    Google Scholar 

  • Islam T, Molla K (2021) CRISPR-Cas Methods, vol 2. Springer Nature

    Book  Google Scholar 

  • Islam MT, Croll D, Gladieux P, Soanes DM, Persoons A, Bhattacharjee P, Hossain MS, Gupta DR, Rahman MM, Mahboob MG, Cook N (2016) Emergence of wheat blast in Bangladesh was caused by a South American lineage of Magnaporthe oryzae. BMC Biol 14:84

    Article  Google Scholar 

  • Islam MT, Kim KH, Choi J (2019) Wheat blasi in Bangladesh: The current situation and future impacts. Plant Pathol J 35:1–10

    Article  CAS  Google Scholar 

  • Islam MT, Gupta DR, Hossain A, Roy KK, He X, Kabir MR, Singh PK, Khan M, Rahman A, Rahman M, Wang GL (2020) Wheat blast: A new threat to food security. Phytopathol Res 2:1–13

    Article  Google Scholar 

  • Iwasaki S, Nozoe S, Okuda S, Sato Z, Kozaka T (1969) Isolation and structural elucidation of a phytotoxic substance produced by Pyricularia oryzae Cavara. Tet Lett 10(45):3977–3980

    Article  Google Scholar 

  • Jacob S (2021) Magnaporthe oryzae: Methods and protocols, 1st edn. Humana, New York, NY, p 234

    Book  Google Scholar 

  • Jacob S, Grötsch T, Foster AJ, Schüffler A, Rieger PH, Sandjo LP, Liermann JC, Opatz T, Thines E (2017) Unravelling the biosynthesis of pyriculol in the rice blast fungus Magnaporthe oryzae. Microbiology 163(4):541

    Article  CAS  Google Scholar 

  • Jeon YT, Ryu KH, Kang MK, Park SH, Yun H, Pham QT, Kim SU (2010) Alternariol monomethyl ether and α, β-dehydrocurvularin from endophytic fungi Alternaria spp. inhibit appressorium formation of Magnaporthe grisea. J Kor Soc Appl Biol Chem 53(1):39–42

    Article  CAS  Google Scholar 

  • Jia Y (2009) A user-friendly method to isolate and single spore the fungi Magnaporthe oryzae and Magnaporthe grisea obtained from diseased field samples. Plant Health Prog 10(1):37

    Article  Google Scholar 

  • Jones JD, Dangl JL (2006) The plant immune system. Nature 444:323–329

    Article  CAS  Google Scholar 

  • Jung YH, Agrawal GK, Rakwal R, Kim JA, Lee MO, Choi PG, Kim YJ, Kim MJ, Shibato J, Kim SH, Iwahashi H (2006) Functional characterization of OsRacB GTPase – a potentially negative regulator of basal disease resistance in rice. Plant Physiol Biochem 44:68–77

    Article  CAS  Google Scholar 

  • Kalpana K, Vadivel N, Kumar KB, Kavimani R (2016) Seasonal influence on the occurrence and management of blast of finger millet (Eleusine coracana (L.) Gaertn.) under field condition. Int J Adv Agric Sci Technol 3:43–51

    Google Scholar 

  • Kamakura T, Yamaguchi S, Saitoh KI, Teraoka T, Yamaguchi I (2002) A novel gene, CBP1, encoding a putative extracellular chitin-binding protein, may play an important role in the hydrophobic surface sensing of Magnaporthe grisea during appressorium differentiation. Mol Plant-Microbe Interact 15(5):437–444

    Article  CAS  Google Scholar 

  • Kamoun S (2009) The secretome of plant-associated fungi and oomycetes. In: Deising HB (ed) Plant Relationships. The Mycota (A Comprehensive Treatise on Fungi as Experimental Systems for Basic and Applied Research), vol 5. Springer, Berlin, pp 173–180

    Google Scholar 

  • Kamoun S, Talbot NJ, Islam MT (2019) Plant health emergencies demand open science: Tackling a cereal killer on the run. PLoS Biol 17(6):e3000302

    Article  CAS  Google Scholar 

  • Kang S, Sweigard JA, Valent B (1995) The PWL host specificity gene family in the blast fungus Magnaporthe grisea. Mol Plant-Microbe Interact 8:939–948

    Article  CAS  Google Scholar 

  • Kang H, Peng Y, Hua K, Deng Y, Bellizzi M, Gupta DR, Mahmud NU, Urashima AS, Paul SK, Peterson G, Zhou Y (2021) Rapid detection of wheat blast pathogen Magnaporthe Oryzae Triticum pathotype using genome-specific primers and cas 12a-mediated technology. Engineering 7(9):1326–1335

    Article  Google Scholar 

  • Kankanala P, Czymmek K, Valent B (2007) Roles for rice membrane dynamics and plasmodesmata during biotrophic invasion by the blast fungus. Plant Cell 19:706–724

    Article  CAS  Google Scholar 

  • Kato H, Mayama S, Sekine R, Kanazawa E, Izutani Y, Urashima AS, Kunoh H (1994) Microconidium formation in Magnaporthe grisea. Ann Phytopathol Soc Jpn 60:175–185

    Article  Google Scholar 

  • Kato H, Yamamoto M, Yamaguchi-Ozaki T, Kadouchi H, Iwamoto Y, Nakayashiki H, Tosa Y, Mayama S, Mori N (2000) Pathogenicity, mating ability and DNA restriction fragment length polymorphisms of Pyricularia populations isolated from Gramineae, Bambusideae and Zingiberaceae plants. J Gen Plant Pathol 66:30–47

    Article  CAS  Google Scholar 

  • Kaur S, Padmanabhan SY, Rao M (1975) Induction of resistance to blast disease (Pyricularia oryzae) in the high yielding variety, Ratna (IRE 9 TKM 6). In: Proceedings of the IAEA Research Coordination. Geoling, Ames, Iowa, pp 141–145

    Google Scholar 

  • Kawamata H, Narisawa K, Hashiba T (2004) Suppression of rice blast by phylloplane fungi isolated from rice plants. J Gen Plant Pathol 70(2):131–138

    Article  Google Scholar 

  • Khan M, Seto D, Subramaniam R, Desveaux D (2018) Oh, the places they’ll go! A survey of phytopathogen effectors and their host targets. Plant J 93:651–663

    Article  CAS  Google Scholar 

  • Khraiwesh B, Zhu JK, Zhu J (2012) Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants. Biochim Biophys Acta Gene Regul Mech 1819(2):137–148

    Article  CAS  Google Scholar 

  • Kim YS, Dixon EW, Vincelli P, Farman ML (2003) Field resistance to strobilurin (QoI) fungicides in Pyricularia grisea caused by mutations in the mitochondrial cytochrome b gene. Phytopathology 93:891–900

    Article  CAS  Google Scholar 

  • Kim B, Han JW, Ngo MT, Le Dang Q, Kim JC, Kim H, Choi GJ (2018) Identification of novel compounds, oleanane-and ursane-type triterpene glycosides, from Trevesia palmata: their biocontrol activity against phytopathogenic fungi. Sci Rep 8(1):1–11

    Google Scholar 

  • Kim KT, Ko J, Song H, Choi G, Kim H, Jeon J, Cheong K, Kang S, Lee YH (2019) Evolution of the genes encoding effector candidates within multiple pathotypes of Magnaporthe oryzae. Front Microbiol 10:2575

    Article  Google Scholar 

  • Kim S, Kim CY, Park SY, Kim KT, Jeon J, Chung H, Choi G, Kwon S, Choi J, Jeon J, Jeon JS (2020) Two nuclear effectors of the rice blast fungus modulate host immunity via transcriptional reprogramming. Nat Commun 11(1):1–11

    Article  Google Scholar 

  • Klaubauf S, Tharreau D, Fournier E, Groenewald JZ, Crous PW, De Vries RP, Lebrun MH (2014) Resolving the polyphyletic nature of Pyricularia (Pyriculariaceae). Stud Mycol 79:85–120

    Article  CAS  Google Scholar 

  • Kohli MM, Mehta YR, Guzman E, De Viedma L, Cubilla LE (2011) Pyricularia blast-A threat to wheat cultivation. Czech J Genet Plant Breed 47:S00–S04

    Article  Google Scholar 

  • Konda S, Nagaraja A, Nagamma G, Sangeetha PS, Patil S, Dev D, Anjum SS (2016) In vitro evaluation of bio-agents and fungicides against leaf blast (Pyricularia setariae) in foxtail millet [Setaria italica (L.) Beauv.]. J Pure Appl Microbiol 10(1):489

    CAS  Google Scholar 

  • Korinsak S, Sirithunya P, Meakwatanakarn P, Sarkarung S, Vanavichit A, Toojinda T (2011) Changing allele frequencies associated with specific resistance genes to leaf blast in backcross introgression lines of Khao Dawk Mali 105 developed from a conventional selection program. Field Crops Res 122(1):32–39

    Article  Google Scholar 

  • Kumar B (2011) Management of blast disease of finger millet (Eleusine coracana) in mid-western Himalayas. Indian Phytopathol 64(2):154

    Google Scholar 

  • Kumar B, Kumar J (2011) Management of blast disease of finger millet (Eleusine coracana) through fungicides, bioagents and varietal mixture. Ind Phytopathol 64(3):272

    Google Scholar 

  • Kunyosying D, To-anun C, Cheewangkoon R (2018) Control of rice blast disease using antagonistic yeasts. Int J Agric Tech 14:83–98

    CAS  Google Scholar 

  • Kuwite CA, Shao FM (1992) Pyricularia spp causing head blight of finger millet (Eleusine coracana) and other fungi associated with finger millet in Tanzania. In: de Wa J, Frederiksen RA, Bengston GD (eds) Sorghum and millets diseases: A Second World Review. ICRISAT, Patancheru

    Google Scholar 

  • Langner T, Kamoun S, Belhaj K (2018) CRISPR crops: plant genome editing toward disease resistance. Annu Rev Phytopathol 56:479–512

    Article  CAS  Google Scholar 

  • Le MT, Arie T, Teraoka T (2010) Population dynamics and pathogenic races of rice blast fungus, Magnaporthe oryzae in the Mekong Delta in Vietnam. J Gen Plant Pathol 76:177–182

    Article  Google Scholar 

  • Lee S, Song M, Seo Y, Kim S, Ko S, Cao P, Suh J, Yi G, Roh J, Lee S, An G, Hahn TR, Wang GL, Ronald P, Jeon JS (2009) Rice Pi5-mediated resistance to Magnaporthe oryzae requires the presence of two coiled-coil-nucleotide-binding-leucine-rich repeat genes. Genetics 181:1627–1638

    Article  CAS  Google Scholar 

  • Leelasuphakul W, Sivanunsakul P, Phongpaichit S (2006) Purification, characterization and synergistic activity of beta-1, 3-glucanase and antibiotic extract from an antagonistic Bacillus subtilis NSRS 89-24 against rice blast and sheath blight. Enzym Microb Technol 38:990–997

    Article  CAS  Google Scholar 

  • Li W, Wang B, Wu J, Lu G, Hu Y, Zhang X, Zhang Z, Zhao Q, Feng Q, Zhang H, Wang Z (2009) The Magnaporthe oryzae avirulence gene AvrPiz-t encodes a predicted secreted protein that triggers the immunity in rice mediated by the blast resistance gene Piz-t. Mol Plant-Microbe Interact 22(4):411–420

    Article  CAS  Google Scholar 

  • Li Q, Jiang Y, Ning P, Zheng L, Huang J, Li G, Jiang D, Hsiang T (2011) Suppression of Magnaporthe oryzae by culture filtrates of Streptomyces globisporus JK-1. Biol Control 58(2):139–148

    Article  CAS  Google Scholar 

  • Li Y, Lu YG, Shi Y, Wu L, Xu YJ, Huang F, Guo XY, Zhang Y, Fan J, Zhao JQ et al (2014) Multiple rice MicroRNAs are involved in immunity against the blast fungus Magnaporthe oryzae. Plant Physiol 164(2):1077–1092

    Article  CAS  Google Scholar 

  • Li Y, Zhao SL, Li JL, Hu XH, Wang H, Cao XL, Xu YJ, Zhao ZX, Xiao ZY, Yang N, Fan J (2017) Osa-miR169 negatively regulates rice immunity against the blast fungus Magnaporthe oryzae. Front Plant Sci 8:2

    Google Scholar 

  • Li WT, Chern MS, Yin JJ, Wang J, Chen XW (2019a) Recent advances in broad-spectrum resistance to the rice blast disease. Curr Opin Plant Biol 50:114–120

    Article  CAS  Google Scholar 

  • Li YD, Li JJ, Zhang M, Tian L, Yang SQ, Li PF, Zhang YX (2019b) Analysis of blast resistance genes in Japonica rice core collection and progeny in Ningxia. J Plant Genet Res 20(2):321–334. (in Chinese with English abstract)

    CAS  Google Scholar 

  • Li JIN, Peng K-W, Pan Q-Y, Zhu Z-Y, Peng D (2021) Isolation and identification of Bacillus amyloliquefaciens HR-2 and biological control of rice blast. Biotechnol Bull 37(3):27–34

    Google Scholar 

  • Lin F, Chen S, Que Z, Wang L, Liu X, Pan Q (2007) The blast resistance gene Pi37 encodes a nucleotide binding site leucine-rich repeat protein and is a member of a resistance gene cluster on rice chromosome 1. Genetics 177:1871–1880

    Article  CAS  Google Scholar 

  • Liu X, Lin F, Wang L, Pan Q (2007) The in silico map-based cloning of Pi36, a rice coiled-coil-nucleotide-binding site–leucine-rich repeat gene that confers race-specific resistance to the blast fungus. Genetics 176(4):2541–2549

    Article  CAS  Google Scholar 

  • Liu W, Zhou X, Li G, Li L, Kong L, Wang C, Zhang H, Xu JR (2011) Multiple plant surface signals are sensed by different mechanisms in the rice blast fungus for appressorium formation. PLoS Pathog 7:1001261

    Article  Google Scholar 

  • Liu B, Li JF, Ao Y, Qu J, Li Z, Su J, Zhang Y, Liu J, Feng D, Qi K, He Y (2012) Lysin motif-containing proteins LYP4 and LYP6 play dual roles in peptidoglycan and chitin perception in rice innate immunity. Plant Cell 2416(8):3406–3419

    Article  Google Scholar 

  • Liu W, Liu J, Ning Y, Ding B, Wang X, Wang Z, Wang GL (2013) Recent progress in understanding PAMP- and effectortriggered immunity against the rice blast fungus Magnaporthe oryzae. Mol Plant 6:605–620

    Article  CAS  Google Scholar 

  • Liu W, Liu J, Triplett L, Leach JE, Wang GL (2014) Novel insights into rice innate immunity against bacterial and fungal pathogens. Annu Rev Phytopathol 52:213–241

    Article  CAS  Google Scholar 

  • Liu Q, Yang J, Zhang S, Zhao J, Feng A, Yang T, Wang X, Mao X, Dong J, Zhu X, Leung H (2016) OsGF14b Positively regulates panicle blast resistance but negatively regulates leaf blast resistance in rice. Mol Plant-Microbe Interact 29:46–56

    Article  Google Scholar 

  • Liu X, Li W, Hu B, Wang M, Wang J, Guan L (2018) Identification of isobavachalcone as a potential drug for rice blast disease caused by the fungus Magnaporthe grisea. J Biomol Struct Dyn 37(13):3399–3409

    Article  Google Scholar 

  • Lü Q, Xu X, Shang J, Jiang G, Pang Z, Zhou Z, Wang J, Liu Y, Li T, Li X, Xu J, Cheng Z, Zhao X, Li S, Zhu L (2013) Functional analysis of Pid3-A4, an ortholog of rice blast resistance gene Pid3 revealed by allele mining in common wild rice. Phytopathology 103:594–599

    Article  Google Scholar 

  • Lu S, Li F, Chen Q, Wu J, Duan J, Lei X, Zhang Y, Zhao D, Bu Z, Yin H (2020) Rapid detection of African swine fever virus using Cas12a-based portable paper diagnostics. Cell Discov 6(1):1–10

    Article  Google Scholar 

  • Luo J, Zhang N (2013) Magnaporthiopsis, a new genus in Magnaporthaceae (Ascomycota). Mycologia 105:1019–1029

    Article  Google Scholar 

  • Ma J, Lei CL, Xu XT, Hao K, Wang JL, Cheng ZJ, Ma XD, Ma J, Zhou KN, Zhang X, Guo XP, Wu FQ, Lin QB, Wang CM, Zhai HQ, Wang HY, Wan JM (2015) Pi64, encoding a novel CC-NBS-LRR protein, confers resistance to leaf and neck blast in rice. Mol Plant-Microbe Interact 28(5):558–568

    Article  CAS  Google Scholar 

  • Ma J, Chen J, Wang M, Ren Y, Wang S, Lei C, Cheng Z (2017) Disruption of OsSEC3A increases the content of salicylic acid and induces plant defense responses in rice. J Exp Bot 69:1051–1064

    Article  Google Scholar 

  • Maciel JLN (2011) Magnaporthe oryzae, the blast pathogen: current status and options for its control. In: Hemming D (ed) Plant Sciences Reviews. CABI, London, pp 233–240

    Google Scholar 

  • Maciel JLN, Ceresini PC, Castroagudín VL, Zala M, Kema GHJ, McDonald BA (2014) Population structure and pathotype diversity of the wheat blast pathogen Magnaporthe oryzae 25 years after its emergence in Brazil. Phytopathology 104:95–107

    Article  Google Scholar 

  • Maekawa T, Schulze-Lefert P (2017) Caught in the jump. Science 357(6346):31–32

    Article  CAS  Google Scholar 

  • Malaker PK, Barma NC, Tewari TP, Collis WJ, Duveiller E, Singh PK, Joshi AK, Singh RP, Braun HJ, Peterson GL, Pedley KF (2016) First report of wheat blast caused by Magnaporthe oryzae pathotype Triticum in Bangladesh. Plant Dis 100(11):2330

    Article  Google Scholar 

  • Mallikarjuna B, Nagaraj MS, Palanna KB (2020) In vitro evaluation of bio control agents against blast of foxtail millet caused by Pyricularia setariae. Int J Curr Microbiol Appl Sci 9:3019–3027

    Article  CAS  Google Scholar 

  • Malzahn A, Lowder L, Qi YP (2017) Plant genome editing with TALEN and CRISPR. Cell Biosci 7:21

    Article  Google Scholar 

  • Manandhar HK, Lyngs Jørgensen HJ, Mathur SB, Smedegaard-Petersen V (1998) Suppression of rice blast by preinoculation with avirulent Pyricularia oryzae and the nonrice pathogen Bipolaris sorokiniana. Phytopathology 88:735–739

    Article  CAS  Google Scholar 

  • Manibhushanrao K (1994) Rice blast disease, 1st edn. Daya Publishing House, Delhi, p 1

    Google Scholar 

  • Mao T, Zhu M, Ahmad S, Ye G, Sheng Z, Hu S, Jiao G, Xie L, Tang S, Wei X, Hu P (2021) Superior japonica rice variety YJ144 with improved rice blast resistance, yield, and quality achieved using molecular design and multiple breeding strategies. Mol Breed 41(10):1–8

    Article  Google Scholar 

  • Mehta YR (2014) Pillars of integrated disease management. In: Mehta YR (ed) Wheat Diseases and their Management. Springer International Publishing, Cham, pp 17–63

    Google Scholar 

  • Mehta YR, Riede CR, Campos LAC, Kohli MM (1992) Integrated management of major wheat diseases in Brazil: an example for the Southern Cone region of Latin America. Crop Prot 11:517–524

    Article  Google Scholar 

  • Mei Y, Wang Y, Chen H, Sun ZS, Ju XD (2016) Recent progress in CRISPR/Cas9 technology. J Genet Genome 43(2):63–75

    Article  Google Scholar 

  • Mentlak TA, Kombrink A, Shinya T, Ryder LS, Otomo I, Saitoh H, Terauchi R, Nishizawa Y, Shibuya N, Thomma BP, Talbot NJ (2012) Effector-mediated suppression of chitintriggered immunity by Magnaporthe oryzae is necessary for rice blast disease. Plant Cell 24:322–335

    Article  CAS  Google Scholar 

  • Miah G, Rafii MY, Ismail MR, Puteh AB, Rahim HA, Asfaliza R, Latif MA (2013) Blast resistance in rice: A review of conventional breeding to molecular approaches. Mol Biol Rep 40:2369–2388

    Article  CAS  Google Scholar 

  • Mohamed MI (1980) A disease of Eleusine coracana new to Somalia. Rev Agric Sutro Trop 74:73–79

    Google Scholar 

  • Moriguchi Y, Kihara J, Ueno M (2019) Suppression effects of a secondary metabolite of Biscogniauxia sp. strain O-811 obtained from mushrooms against the rice blast fungus Magnaporthe oryzae. Bull Fac Life Env Sci Shimane Univ 24:14–18

    Google Scholar 

  • Mosquera G, Giraldo MC, Khang CH, Coughlan S, Valent B (2009) Interaction transcriptome analysis identifies Magnaporthe oryzae BAS1-4 as biotrophy-associated secreted proteins in rice blast disease. Plant Cell 21:1273–1290

    Article  CAS  Google Scholar 

  • Murakami J, Tosa Y, Kataoka T (2000) Analysis of host species specificity of Magnaporthe grisea toward wheat using a genetic cross between isolates from wheat and foxtail millet. Phytopathology 90:1060–1067

    Article  CAS  Google Scholar 

  • Murata N, Aoki T, Kusaba M, Tosa Y, Chuma I (2014) Various species of Pyricularia constitute a robust clade distinct from Magnaporthe salvinii and its relatives in Magnaporthaceae. J Gen Plant Pathol 80:66–72

    Article  CAS  Google Scholar 

  • Muyanga S, Danial DL (1995) Production and research review of small millets cereals in Zambia. In: Daniel DL (ed) Breeding for Disease Resistance with Emphasizing Durability. Wageningen Agril Univ, Wageningen, pp 60–64

    Google Scholar 

  • Nalley L, Tsiboe F, Durand-Morat A, Shew A, Thoma G (2016) Economic and environmental impact of rice blast pathogen (Magnaporthe oryzae) alleviation in the United States. PLoS One 11:e0167295

    Article  Google Scholar 

  • Naureen Z, Price AH, Hafeez FY, Roberts MR (2009) Identification of rice blast disease-suppressing bacterial strains from the rhizosphere of rice grown in Pakistan. Crop Prot 28(12):1052–1060

    Article  Google Scholar 

  • Nayaka SC, Hosahatti R, Prakash G, Satyavathi CT, Sharma R (2021) Blast Disease of Cereal Crops, 1st edn. Springer, Cham, p 219

    Book  Google Scholar 

  • Nekrasov V, Wang C, Win J, Lanz C, Weigel D, Kamoun S (2017) Rapid generation of a transgene free powdery mildew resistant tomato by genome deletion. Sci Rep 7:482

    Article  Google Scholar 

  • Nga NTT, Hau VTB, Tosa Y (2009) Identification of genes for resistance to a Digitaria isolate of Magnaporthe grisea in common wheat cultivars. Genome 52:801–809

    Article  CAS  Google Scholar 

  • Ngo MT, Han JW, Yoon S, Bae S, Kim SY, Kim H, Choi GJ (2019) Discovery of new triterpenoid saponins isolated from Maesa japonica with antifungal activity against rice blast fungus Magnaporthe oryzae. J Agric Food Chem 67(27):7706–7715

    Article  CAS  Google Scholar 

  • Nguyen QT, Ueda K, Tamura T, Kihara J, Itoh K, Yoshikiyo K, Sakaguchi Y, Ueno M (2018) Antifungal activity of a novel compound purified from the culture filtrate of Biscogniauxia sp. O821 against the rice blast fungus Magnaporthe oryzae. J Gen Plant Pathol 84(2):142–147

    Article  CAS  Google Scholar 

  • Norvienyeku J, Lin L, Waheed A, Chen X, Bao J, Shabbir A, Lin L, Zhong Z, Batool W, Aliyu SR, Zhou J (2019) Bayogenin 3-O-Cellobioside is a novel non-cultivar specific anti-blast metabolite produced in rice in response to Pyricularia oryzae infection. bioRxiv:647636

    Google Scholar 

  • Nukina M (1999) The blast disease fungi and their metabolic products. J Pestic Sci 24:293–298

    Article  CAS  Google Scholar 

  • Oh HS, Tosa Y, Takabayashi N, Nakagawa S, Tomita R, Don LD, Kusaba M, Nakayashiki H, Mayama S (2002) Characterization of an Avena isolate of Magnaporthe grisea and identification of a locus conditioning its specificity on oat. Can J Bot 80(10):1088–1095

    Article  Google Scholar 

  • Okuyama Y, Kanzaki H, Abe A, Yoshida K, Tamiru M, Saitoh H, Fujibe T, Matsumura H, Shenton M, Galam DC, Undan J, Ito A, Sone T, Terauchi R (2011) A multifaceted genomics approach allows the isolation of the rice Pia-blast resistance gene consisting of two adjacent NBS-LRR protein genes. Plant J 66:467–479

    Article  CAS  Google Scholar 

  • Oliveira SCD, Castroagudín VL, Maciel JLN, Pereira DADS, Ceresini PC (2015) Cross-resistance to QoI fungicides azoxystrobin and pyraclostrobin in the wheat blast pathogen Pyricularia oryzae in Brazil. Summa Phytopathol 41:298–304

    Article  Google Scholar 

  • Orbach MJ, Farrall L, Sweigard JA, Chumley FG, Valent B (2000) A telomeric avirulence gene determines efficacy for the rice blast resistance gene Pi-ta. Plant Cell 12(11):2019–2032

    Article  CAS  Google Scholar 

  • Ou SH (1985) Rice diseases. CABI, Wallingford, pp 109–201

    Google Scholar 

  • Park M (1932) Report of the work done of the mycological division. Admn Rep Dir Agric Ceylon 21:103–111

    Google Scholar 

  • Park JH, Choi GJ, Jang KS, Lim HK, Kim HT, Cho KY, Kim JC (2005) Antifungal activity against plant pathogenic fungi of chaetoviridins isolated from Chaetomium globosum. FEMS Microbiol Lett 252(2):309–313

    Article  CAS  Google Scholar 

  • Park JY, Jin J, Lee YW, Kang S, Lee YH (2009) Rice blast fungus (Magnaporthe oryzae) infects Arabidopsis via a mechanism distinct from that required for the infection of rice. Plant Physiol 149:474–486

    Article  CAS  Google Scholar 

  • Patel A, Kumar A, Sheoran N, Kumar M, Sahu KP, Ganeshan P, Ashajyothi M, Gopalakrishnan S, Gogoi R (2021) Antifungal and defense elicitor activities of pyrazines identified in endophytic Pseudomonas putida BP25 against fungal blast incited by Magnaporthe oryzae in rice. J Plant Dis Prot 128(1):261–272

    Article  CAS  Google Scholar 

  • Patkar RN, Benke PI, Qu Z, Chen YY, Yang F, Swarup S, Naqvi NI (2015) A fungal monooxygenase-derived jasmonate attenuates host innate immunity. Nat Chem Biol 11:733–740

    Article  CAS  Google Scholar 

  • Paul SK, Chakraborty M, Rahman M, Gupta DR, Mahmud NU, Rahat AAM, Sarker A, Hannan MA, Rahman MM, Akanda AM, Ahmed JU, Islam T (2022) Marine natural product antimycin A suppresses wheat blast disease caused by Magnaporthe oryzae Triticum. J Fungi 8(6):618

    Article  CAS  Google Scholar 

  • Peng AH, Chen SC, Lei TG, Xu LZ, He YR, Wu L, Yao L, Zou X (2017) Engineering canker-resistant plants through CRISPR/Cas9-targeted editing of the susceptibility gene CsLOB1 promoter in citrus. Plant Biotechnol J 15:1509–1519

    Article  CAS  Google Scholar 

  • Peng Z, Oliveira-Garcia E, Lin G, Hu Y, Dalby M, Migeon P, Tang H, Farman M, Cook D, White FF, Valent B, Liu S (2019) Effector gene reshuffling involves dispensable mini-chromosomes in the wheat blast fungus. PLoS Genet 15:e1008272

    Article  CAS  Google Scholar 

  • Penn TJ, Wood ME, Soanes DM, Csukai M, Corran AJ, Talbot NJ (2015) Protein kinase C is essential for viability of the rice blast fungus Magnaporthe oryzae. Mol Microbiol 98(3):403–419

    Article  CAS  Google Scholar 

  • Pennisi E (2010) Armed and dangerous. Science 327:804–805

    Article  CAS  Google Scholar 

  • Perelló AE, Martinez I, Molina M (2015) First report of virulence and effects of Magnaporthe oryzae isolates causing wheat blast in Argentina. Plant Dis 99(8):1177

    Article  Google Scholar 

  • Pieck ML, Ruck A, Farman ML, Peterson GL, Stack JP, Valent B, Pedley KF (2017) Genomics-based marker discovery and diagnostic assay development for wheat blast. Plant Dis 101(1):103–109

    Article  CAS  Google Scholar 

  • Pooja K, Katoch A (2014) Past, present and future of rice blast management. Plant Sci Today 1(3):165–173

    Article  Google Scholar 

  • Pordel A, Ravel S, Charriat F, Gladieux P, Cros-Arteil S, Milazzo J, Adreit H, Javan-Nikkhah M, Mirzadi-Gohari A, Moumeni A, Tharreau D (2021) Tracing the origin and evolutionary history of Pyricularia oryzae infecting maize and barnyard grass. Phytopathology 111(1):128–136

    Article  CAS  Google Scholar 

  • Pradhan A, Ghosh S, Sahoo D, Jha G (2021) Fungal effectors, the double edge sword of phytopathogens. Curr Genet 67(1):27–40

    Article  CAS  Google Scholar 

  • Prasanna Kumar MK, Amruta N, Manjula CP, Puneeth ME, Teli K (2017) Characterisation, screening and selection of Bacillus subtilis isolates for its biocontrol efficiency against major rice diseases. Biocontrol Sci Tech 27(4):581–599

    Article  Google Scholar 

  • Qian B, Su X, Ye Z, Liu X, Liu M, Shen D, Chen H, Zhang H, Wang P, Zhang Z (2021) MoErv29 promotes apoplastic effector secretion contributing to virulence of the rice blast fungus Magnaporthe oryzae. New Phytol 233(3):1289–1302

    Article  Google Scholar 

  • Qu SH, Liu GF, Zhou B, Bellizzi M, Zeng LR, Dai LY, Han B, Wang GL (2006) The broad-spectrum blast resistance gene Pi9 encodes a nucleotide-binding site-leucine-rich repeat protein and is a member of a multigene family in rice. Genetics 172:1901–1914

    Article  CAS  Google Scholar 

  • Raffaele S, Kamoun S (2012) Genome evolution in filamentous plant pathogens: why bigger can be better. Nat Rev Microbiol 10:417–430

    Article  CAS  Google Scholar 

  • Rais A, Shakeel M, Malik K, Hafeez FY, Yasmin H, Mumtaz S, Hassan MN (2018) Antagonistic Bacillus spp. reduce blast incidence on rice and increase grain yield under field conditions. Microbiol Res 208:54–62

    Article  Google Scholar 

  • Ray S, Singh PK, Gupta DK, Mahato AK, Sarkar C, Rathour R, Singh NK, Sharma TR (2016) Analysis of Magnaporthe oryzae genome reveals a fungal effector, which is able to induce resistance response in transgenic rice line containing resistance gene, Pi54. Front Plant Sci 7:1140

    Article  Google Scholar 

  • Ribot C, Hirsch J, Balzergue S, Tharreau D, Nottéghem JL, Lebrun MH, Morel JB (2008) Susceptibility of rice to the blast fungus, Magnaporthe grisea. J Plant Physiol 165(1):114–124

    Article  CAS  Google Scholar 

  • Ribot C, Césari S, Abidi I, Chalvon V, Bournaud C, Vallet J, Lebrun MH, Morel JB, Kroj T (2012) The Magnaporthe oryzae effector AVR1–CO39 is translocated into rice cells independently of a fungal-derived machinery. Plant J 74(1):1–2

    Article  Google Scholar 

  • Rout S, Tewari SN (2012) Amalab-E, a formulated botanical product potential against rice blast incitant Pyricularia grisea. The Bioscan 7(3):547–552

    Google Scholar 

  • Saitoh H, Fujisawa S, Mitsuoka C, Ito A, Hirabuchi A, Ikeda K, Irieda H, Yoshino K, Yoshida K, Matsumura H, Tosa Y (2012) Large-scale gene disruption in Magnaporthe oryzae identifies MC69, a secreted protein required for infection by monocot and dicot fungal pathogens. PloS Pathog 8(5):e1002711

    Article  CAS  Google Scholar 

  • Saleh D, Xu P, Shen Y, Li C, Adreit H, Milazzo J, Ravigné V, Bazin E, Nottéghem JL, Fournier E, Tharreau D (2012) Sex at the origin: An Asian population of the rice blast fungus Magnaporthe oryzae reproduces sexually. Mol Ecol 21:1330–1344

    Article  Google Scholar 

  • Saleh D, Milazzo J, Adreit H, Fournier E, Tharreau D (2014) South-East Asia is the center of origin, diversity and dispersion of the rice blast fungus, Magnaporthe oryzae. New Phytol 201:1440–1456

    Article  Google Scholar 

  • Sandjo LP, Thines E, Opatz T, Schüffler A (2014) Tanzawaic acids I–L: Four new polyketides from Penicillium sp. IBWF104-06. Beilstein J Organ Chem 10(1):251–258

    Article  Google Scholar 

  • Santos HP, Lhamby JCB, Prestes AM, Lima MR (2000) Effect of soil management and of crop rotation systems on wheat yield and diseases. Pesq Agropec Bras 35:2355–2361

    Article  Google Scholar 

  • Sánchez E, Ali Z, Islam T, Mahfouz M (2022) A CRISPR-based lateral flow assay for plant genotyping and pathogen diagnostics. Plant Biotechnol J:pbi.13924. https://doi.org/10.1111/pbi.13924

  • Saunders DG (2021) Will yield gains be lost to disease? Nat Clim Chang 11(8):648–649

    Article  Google Scholar 

  • Saunders DG, Aves SJ, Talbot NJ (2010) Cell cycle–mediated regulation of plant infection by the rice blast fungus. Plant Cell 22(2):497–507

    Article  CAS  Google Scholar 

  • Sawada H, Sugihara M, Takagaki M, Nagayama K (2004) Monitoring and characterization of Magnaporthe grisea isolates with decreased sensitivity to scytalone dehydratase inhibitors. Pest Manag Sci 60:777–785

    Article  CAS  Google Scholar 

  • Sena A, Chaibub AA, Côrtes MV, Silva GB, Silva-Lobo VL, Prabhu AS, Filippi MC, Araújo LG (2013) Increased enzymatic activity in rice leaf blast suppression by crude extract of Epicoccum sp. Trop Plant Pathol 38:387–397

    Article  Google Scholar 

  • Sesma A, Osbourn AE (2004) The rice leaf blast pathogen undergoes developmental processes typical of root-infecting fungi. Nature 431(7008):582–586

    Article  CAS  Google Scholar 

  • Sha Y, Wang Q, Li Y (2016) Suppression of Magnaporthe oryzae and interaction between Bacillus subtilis and rice plants in the control of rice blast. Springer Plus 5(1):1–13

    Article  Google Scholar 

  • Shan QW, Zhang Y, Chen KL, Zhang K, Gao CX (2015) Creation of fragrant rice by targeted knockout of the OsBADH2 gene using TALEN technology. Plant Biotechnol J 13(6):791–800

    Article  CAS  Google Scholar 

  • Shang JJ, Tao Y, Chen XW, Zou Y, Lei CL, Wang J, Li XB, Zhao XF, Zhang MJ, Lu ZK, Xu JC, Cheng ZK, Wan JM, Zhu LH (2009) Identification of a new rice blast resistance gene, Pid3, by genome wide comparison of paired nucleotide-binding site leucine-rich repeat genes and their pseudogene alleles between the two sequenced rice genomes. Genetics 182(4):1303–1311

    Article  CAS  Google Scholar 

  • Sharma TR, Madhav MS, Singh BK, Shanker P, Jana TK, Dalal V, Pandit A, Singh A, Gaikwad K, Upreti HC, Singh NK (2005) High resolution mapping, cloning and molecular characterization of the Pi-kh gene of rice, which confers resistance to M. grisea. Mol Gen Genomics 274(6):569–578

    Article  CAS  Google Scholar 

  • Sharma TR, Rai AK, Gupta SK, Vijayan J, Devanna B, Ray S (2012) Rice blast management through host-plant resistance: retrospect and prospects. Agric Res 1:37–52

    Article  Google Scholar 

  • Sharma R, Girish AG, Upadhyaya HD, Humayun P, Babu TK, Rao VP, Thakur RP (2013) Identification of blast resistance in a core collection of foxtail millet germplasm. Plant Dis 98:519–524

    Article  Google Scholar 

  • Shen Q, Liang M, Yang F, Deng YZ, Naqvi NI (2020) Ferroptosis contributes to developmental cell death in rice blast. New Phytol 227(6):1831–1846

    Article  CAS  Google Scholar 

  • Shimoi S, Inoue K, Kitagawa H, Yamasaki M, Tsushima S, Park P, Ikeda K (2010) Biological control for rice blast disease by employing detachment action with gelatinolytic bacteria. Biol Control 55(2):85–91

    Article  Google Scholar 

  • Shirai M (1896) Notes on plants collected in suruga, Totomi, yamato and kii. Bot Mag Tokyo 10:111–114

    Article  Google Scholar 

  • Shu GY (2009) Induced Plant Mutations in the Genomics Era. Food and Agriculture Organization of the United Nations, Rome, pp 425–427

    Google Scholar 

  • Shyamala L, Sivakumaar PK (2012) Antifungal activity of rhizobacteria isolated from rice rhizosphere soil against rice blast fungus Pyricularia oryzae. Int J Pharm Biol Archiv 3(3):692–696

    Google Scholar 

  • Silva CP, Nomura E, Freitas EG, Brugnaro C, Urashima AS (2009) Efficiency of alternative treatments in the control of Pyricularia grisea in wheat seeds. Trop Plant Pathol 34:127–131

    Article  Google Scholar 

  • Skamnioti P, Gurr SJ (2009) Against the grain: safeguarding rice from rice blast disease. Trends Biotechnol 27(3):141–150

    Article  CAS  Google Scholar 

  • Soanes DM, Chakrabarti A, Paszkiewicz KH, Dawe AL, Talbot NJ (2012) Genome-wide transcriptional profiling of appressorium development by the rice blast fungus Magnaporthe oryzae. PLoS Pathog 8(2):1002514

    Article  Google Scholar 

  • Su J, Wang W, Han J, Chen S, Wang C, Zeng L, Feng A, Yang J, Zhou B, Zhu X (2015) Functional divergence of duplicated genes results in a novel blast resistance gene Pi50 at the Pi2/9 locus. Theor Appl Genet 128:2213–2225

    Article  CAS  Google Scholar 

  • Subramanian CV (1968) Pyricularia oryzae. CMI Descriptions of Pathogenic Fungi and Bacteria No. 169. CMI, Kew, Surrey

    Google Scholar 

  • Surovy MZ, Mahmud NU, Bhattacharjee P, Hossain M, Mehebub M, Rahman M, Majumdar BC, Gupta DR, Islam T (2020) Modulation of nutritional and biochemical properties of wheat grains infected by blast fungus Magnaporthe oryzae Triticum pathotype. Front Microbiol 11:1174

    Article  Google Scholar 

  • Sweigard JA, Carroll AM, Kang S, Farrall L, Chumley FG, Valent B (1995) Identification, cloning, and characterization of PWL2, a gene for host species specificity in the rice blast fungus. Plant Cell 7:1221–1233

    CAS  Google Scholar 

  • Tagle AG, Chuma I, Tosa Y (2015) Rmg7, a new gene for resistance to Triticum isolates of Pyricularia oryzae identified in tetraploid wheat. Phytopathology 105:495–499

    Article  CAS  Google Scholar 

  • Tajul MI, Motoyama T, Hatanaka A, Sariah M, Osada H (2012) Green-odour compounds have antifungal activity against the rice blast fungus Magnaporthe oryzae. Eur J Plant Pathol 132(1):91–100

    Article  Google Scholar 

  • Takabayashi N, Tosa Y, Oh HS, Mayama S (2002) A gene-for-gene relationship underlying the species-specific parasitism of Avena/Triticum isolates of Magnaporthe grisea on wheat cultivars. Phytopathology 92(11):1182–1188

    Article  CAS  Google Scholar 

  • Takagi H, Uemura A, Yaegashi H, Tamiru M, Abe A, Mitsuoka C, Utsushi H, Natsume S, Kanzaki H, Matsumura H, Saitoh H, Yoshida K, Cano LM, Kamoun S, Terauchi R (2013) Mut Map-Gap: whole-genome resequencing of mutant F2 progeny bulk combined with de novo assembly of gap regions identifies the rice blast resistance gene Pii. New Phytol 200:276–283

    Article  CAS  Google Scholar 

  • Takahashi A, Hayashi N, Miyao A, Hirochika H (2010) Unique features of the rice blast resistance Pish locus revealed by large scale retrotransposon-tagging. BMC Plant Biol 10(1):1–4

    Article  Google Scholar 

  • Takan JP, Chipili J, Muthumeenakshi S, Talbot NJ, Manyasa EO, Bandyopadhyay R, Sere Y, Nutsugah SK, Talhinhas P, Hossain M, Brown AE, Sreenivasaprasad S (2012) Magnaporthe oryzae populations adapted to finger millet and rice exhibit distinctive patterns of genetic diversity, sexuality and host interaction. Mol Biotechnol 50:145–158

    Article  CAS  Google Scholar 

  • Talbot NJ (2003) On the trail of a cereal killer: exploring the biology of Magnaporthe grisea. Annu Rev Microbiol 57(1):177–202

    Article  CAS  Google Scholar 

  • Tamura T, Shinzato N, Ito M, Ueno M (2019) Microbial secondary metabolite induction of abnormal appressoria formation mediates control of rice blast disease caused by Magnaporthe oryzae. J Phytopathol 167(3):156–162

    Article  CAS  Google Scholar 

  • Tembo B, Mulenga RM, Sichilima S, M’siska KK, Mwale M, Chikoti PC, Singh PK, He X, Pedley KF, Peterson GL, Singh RP (2020) Detection and characterization of fungus (Magnaporthe oryzae pathotype Triticum) causing wheat blast disease on rain-fed grown wheat (Triticum aestivum L.) in Zambia. PloS One 15(9):e0238724

    Article  CAS  Google Scholar 

  • Tendulkar SR, Saikumari YK, Patel V, Raghotama S, Munshi TK, Balaram P, Chattoo BB (2007) Isolation, purification and characterization of an antifungal molecule produced by Bacillus licheniformis BC98, and its effect on phytopathogen Magnaporthe grisea. J Appl Microbiol 103(6):2331–2339

    Article  CAS  Google Scholar 

  • Tharreau D, Fudal I, Andriantsimialona D, Santoso UD, Fournier E, Lebrun MH, Notteghem JL (2009) World population structure and migration of the rice blast fungus, M. oryzae. In: Wang GL, Valent B (eds) Advances in Genetics, Genomics and Control of Rice Blast Disease. Springer, Dordrecht, pp 209–215

    Chapter  Google Scholar 

  • Thomma BP, Nurnberger T, Joosten MH (2011) Of PAMPs and effectors: the blurred PTI-ETI dichotomy. Plant Cell 23:4–15

    Article  CAS  Google Scholar 

  • Thompson A (1941) Notes on plant diseases in 1940. Malay Agric J 24:241–245

    Google Scholar 

  • Tosa Y, Hirata K, Tamba H, Nakagawa S, Chuma I, Isobe C, Osue J, Urashima AS, Don LD, Kusaba M, Nakayashiki H (2004) Genetic constitution and pathogenicity of Lolium isolates of Magnaporthe oryzae in comparison with host species-specific pathotypes of the blast fungus. Phytopathology 94:454–462

    Article  CAS  Google Scholar 

  • Tosa Y, Tamba H, Tanaka K, Mayama S (2006) Genetic analysis of host species specificity of Magnaporthe oryzae isolates from rice and wheat. Phytopathology 96:480–484

    Article  CAS  Google Scholar 

  • Tredway LP, Stevenson KL, Burpee LL (2003) Mating type distribution and fertility status in Magnaporthe grisea populations from turf grasses in Georgia. Plant Dis 87:435–441

    Article  CAS  Google Scholar 

  • Urashima AS (2010) Blast. In: Bockus WW, Bowden RL, Hunger RM, Morrill WL, Murray TD, Smiley RW (eds) Compendium of wheat diseases and pests. Am Phytopathol Soc, Saint Paul, MN, pp 22–23

    Google Scholar 

  • Urashima AS, Kato H (1998) Pathogenic relationship between isolates of Pyricularia grisea of wheat and other hosts at different host developmental stages. Fitopatol Bras 23:30–35

    Google Scholar 

  • Urashima AS, Igarashi S, Kato H (1993) Host range, mating type and fertility of Pyricularia grisea from wheat in Brazil. Plant Dis 77:1211–1216

    Article  Google Scholar 

  • Urashima AS, Hashimoto Y, Don LD, Kusaba M, Tosa Y, Nakayashiki H, Mayama S (1999) Molecular analysis of the wheat blast population in Brazil with a homolog of retrotransposon MGR583. Ann Phytopathol Soc Jpn 65:429–436

    Article  CAS  Google Scholar 

  • Urashima AS, Martins TD, Bueno CRNC, Favaro DB, Arruda MA, Mehta YR (2004) Triticale and barley: New hosts of Magnaporthe grisea in Sao Paulo, Brazil–Relationship with blast of rice and wheat. In: Kawasaki S (ed) Rice Blast: Interaction with Rice and Control. Kluwer Academic Publishers, Dordrecht, pp. 251–260

    Google Scholar 

  • Usman GM, Wakil W, Sahi ST, Saleem IY (2009) Influence of various fungicides on the management of rice blast disease. Mycopathology 7(1):29–34

    Google Scholar 

  • Valent B (2021) The impact of blast disease: past, present, and future. In: Jacob S (ed) Magnaporthe oryzae: Methods in Molecular Biology, Humana, vol 2356. New York, NY, pp 1–18

    Chapter  Google Scholar 

  • Valent B, Crawford MS, Weaver CG, Chumley FG (1986) Genetic studies of fertility and pathogenicity in Magnaporthe grisea. Iowa State J Res 60:569–594

    Google Scholar 

  • Valent B, Farman M, Tosa Y, Begerow D, Fournier E, Gladieux P, Islam MT, Kamoun S, Kemler M, Kohn LM, Lebrun MH (2019) Pyricularia graminis-tritici is not the correct species name for the wheat blast fungus: response to Ceresini et al. (MPP 20: 2). Mol Plant Pathol 20(2):173

    Article  Google Scholar 

  • Valent B, Cruppe G, Stack JP, Cruz CD, Farman ML, Paul PA, Peterson GL, Pedley KF (2021) Recovery plan for wheat blast caused by Magnaporthe oryzae pathotype Triticum. Plant Health Prog 22(2):182–212

    Article  Google Scholar 

  • van Dijk M, Morley T, Rau ML, Saghai Y (2021) A meta-analysis of projected global food demand and population at risk of hunger for the period 2010–2050. Nat Food 2(7):494–501

    Article  Google Scholar 

  • Vega-Sánchez ME, Zeng L, Chen S, Leung H, Wang GL (2008) SPIN1, a K homology domain protein negatively regulated and ubiquitinated by the E3 ubiquitin ligase SPL11, is involved in flowering time control in rice. Plant Cell 20:1456–1469

    Article  Google Scholar 

  • Veneault-Fourrey C, Barooah M, Egan M, Wakley G, Talbot NJ (2006) Autophagic fungal cell death is necessary for infection by the rice blast fungus. Science 312(5773):580–583

    Article  CAS  Google Scholar 

  • Viedma LQ (2005) Wheat blast occurrence in Paraguay. Phytopathology 95(6):S152

    Google Scholar 

  • Vincelli P, Dixon E (2002) Resistance to Q (o) I (strobilurin-like) fungicides in isolates of Pyricularia grisea from perennial ryegrass. Plant Dis 86:235–240

    Article  CAS  Google Scholar 

  • Vu TT, Kim H, Tran VK, Le Dang Q, Nguyen HT, Kim H, Kim IS, Choi GJ, Kim JC (2015) In vitro antibacterial activity of selected medicinal plants traditionally used in Vietnam against human pathogenic bacteria. BMC Complement Altern Med 16(1):1–6

    Article  Google Scholar 

  • Vy TTP, Hyon GS, Nga NTT, Inoue Y, Chuma I, Tosa Y (2014) Genetic analysis of host-pathogen incompatibility between Lolium isolates of Pyricularia oryzae and wheat. J Gen Plant Pathol 80:59–65

    Article  Google Scholar 

  • Wang ZX, Yano M, Yamanouchi U, Iwamoto M, Monna L, Hayasaka H, Katayose Y, Sasaki T (1999) The Pib gene for rice blast resistance belongs to the nucleotide binding and leucinerich repeat class of plant disease resistance genes. Plant J 19(1):55–64

    Article  Google Scholar 

  • Wang CH, Yang YL, Yuan XP, Xu Q, Feng Y, Yu HY, Wang YP, Wei XH (2014) Genome-wide association study of blast resistance in indica rice. BMC Plant Biol 14:311

    Article  CAS  Google Scholar 

  • Wang FJ, Wang CL, Liu PQ, Lei CL, Hao W, Gao Y, Liu YG, Zhao KJ (2016) Enhanced rice blast resistance by CRISPR/Cas9-targeted mutagenesis of the ERF transcription factor gene OsERF922. PLoS One 11:e0154027

    Article  Google Scholar 

  • Wang ZQ, Meng FZ, Zhang MM, Yin LF, Yin WX, Lin Y, Hsiang T, Peng YL, Wang ZH, Luo CX (2018) A putative Zn2Cys6 transcription factor is associated with isoprothiolane resistance in Magnaporthe oryzae. Front Microbiol 9:2608

    Article  Google Scholar 

  • West JS, Kimber RBE (2015) Innovations in air sampling to detect plant pathogens. Ann Appl Biol 166:4–17

    Article  Google Scholar 

  • West JS, Canning GGM, Perryman SA, King K (2017) Novel technologies for the detection of Fusarium head blight disease and airborne inoculum. Trop Plant Pathol 42:203–209

    Article  Google Scholar 

  • Wheatley MS, Yang Y (2021) Versatile applications of the CRISPR/Cas toolkit in plant pathology and disease management. Phytopathology 111(7):1080–1090

    Article  CAS  Google Scholar 

  • Wilson JP, Gates RN (1993) Forage yield losses in hybrid pearl millet due to leaf blight caused primarily by Pyricularia grisea. Phytopathology 83:739–743

    Article  Google Scholar 

  • Wilson RA, Talbot NJ (2009) Under pressure: investigating the biology of plant infection by Magnaporthe oryzae. Nat Rev Microbiol 7(3):185–195

    Article  CAS  Google Scholar 

  • Woloshuk CP, Sisler HD, Vigil EL (1983) Action of the antipenetrant, tricyclazole, on appressoria of Pyricularia oryzae. Physiol. Plant Pathol 22(2):245–IN21

    Google Scholar 

  • Wu J, Kou Y, Bao J, Li Y, Tang M, Zhu X, Ponaya A, Xiao G, Li J, Li C, Song MY (2015) Comparative genomics identifies the Magnaporthe oryzae avirulence effector AvrPi9 that triggers Pi9-mediated blast resistance in rice. New Phytol 206(4):1463–1475

    Article  CAS  Google Scholar 

  • Xie K, Chen J, Wang Q, Yang Y (2014) Direct phosphorylation and activation of a mitogen-activated protein kinase by a calcium-dependent protein kinase in rice. Plant Cell 26:3077–3089

    Article  CAS  Google Scholar 

  • Xiong ZQ, Tu XR, Wei SJ, Huang L, Li XH, Lu H, Tu GQ (2013) In vitro antifungal activity of antifungalmycin 702, a new polyene macrolide antibiotic, against the rice blast fungus Magnaporthe grisea. Biotechnol Lett 35(9):1475–1479

    Article  CAS  Google Scholar 

  • Xu X, Hayashi N, Wang CT, Fukuoka S, Kawasaki S, Takatsuji H, Jiang CJ (2014) Rice blast resistance gene Pikahei-1(t), a member of a resistance gene cluster on chromosome 4, encodes a nucleotide-binding site and leucine-rich repeat protein. Mol Breed 34(2):691–700

    Article  CAS  Google Scholar 

  • Xu T, Cao L, Zeng J, Franco CM, Yang Y, Hu X, Liu Y, Wang X, Gao Y, Bu Z, Shi L (2019) The antifungal action mode of the rice endophyte Streptomyces hygroscopicus Osi Sh-2 as a potential biocontrol agent against the rice blast pathogen. Pestic Biochem Phys 160:58–69

    Article  CAS  Google Scholar 

  • Xue LH, Liu Y, Li CJ, Wu WX (2017) First report of gray leaf spot (Pyricularia oryzae) on Italian ryegrass (Lolium multiflorum) in China. Plant Dis 101:1049–1049

    Article  Google Scholar 

  • Yaegashi H (1978) Inheritance of pathogenicity in crosses of Pyricularia isolates from weeping love grass and finger millet. Ann Phytopathol Soc Jpn 44:626–632

    Article  Google Scholar 

  • Yaegashi H, Udagawa S (1978) Taxonomical identity of perfect state of Pyricularia grisea and its allies. Can J Bot 56:180–183

    Article  Google Scholar 

  • Yamaguchi I (1982) Fungicides for control of rice blast disease. J Pestic Sci 7(3):307–316

    Article  CAS  Google Scholar 

  • Yamaguchi J, Kuchiki F, Hirayae K, So K (2002) Decreased effect of carpropamid for rice blast control in the west north area of Saga Prefecture in 2001. Jpn J Phytopathol 68:261

    Google Scholar 

  • Yamaguchi T, Kuroda M, Yamakawa H, Ashizawa T, Hirayae K, Kurimoto L, Shinya T, Shibuya N (2009) Suppression of a phospholipase D gene, OsPLDbeta1, activates defense responses and increases disease resistance in rice. Plant Physiol 150:308–319

    Article  CAS  Google Scholar 

  • Yamato T, Handa A, Arazoe T, Kuroki M, Nozaka A, Kamakura T, Ohsato S, Arie T, Kuwata S (2019) Single crossover-mediated targeted nucleotide substitution and knock-in strategies with CRISPR/Cas9 system in the rice blast fungus. Sci Rep 9:7427

    Article  Google Scholar 

  • Yan X, Talbot NJ (2016) Investigating the cell biology of plant infection by the rice blast fungus Magnaporthe oryzae. Curr Opin Microbiol 34:147–153

    Article  CAS  Google Scholar 

  • Yang H, Yang X, Wang Y (2011) The correlation analysis between blast resistance and genetic diversity of 39 Yunnan glutinous rice varieties. J Yunnan Agric Univ 26:1–5

    Google Scholar 

  • Yao K, Peng D, Jiang C, Zhao W, Li G, Huang W, Kong L, Gao H, Zheng J, Peng H (2022) Rapid and visual detection of Heterodera schachtii using recombinase polymerase amplification combined with Cas12a-mediated technology. Int J Mol Sci 22(22):12577

    Article  Google Scholar 

  • Yin J, Zou L, Zhu X, Cao Y, He M, Chen X (2021) Fighting the enemy: How rice survives the blast pathogen’s attack. Crop J 9(3):543–552

    Article  Google Scholar 

  • Yokotani N, Sato Y, Tanabe S, Chujo T, Shimizu T, Okada K, Yamane H, Shimono M, Sugano S, Takatsuji H, Kaku H (2013) WRKY76 is a rice transcriptional repressor playing opposite roles in blast disease resistance and cold stress tolerance. J Exp Bot 64:5085–5097

    Article  CAS  Google Scholar 

  • Yoshida K, Saitoh H, Fujisawa S, Kanzaki H, Matsumura H, Yoshida K, Tosa Y, Chuma I, Takano Y, Win J, Kamoun S (2009) Association genetics reveals three novel avirulence genes from the rice blast fungal pathogen Magnaporthe oryzae. Plant Cell 21(5):1573–1591

    Article  CAS  Google Scholar 

  • Yoshida K, Saunders DG, Mitsuoka C, Natsume S, Kosugi S, Saitoh H, Inoue Y, Chuma I, Tosa Y, Cano LM, Kamoun S (2016) Host specialization of the blast fungus Magnaporthe oryzae is associated with dynamic gain and loss of genes linked to transposable elements. BMC Genomics 17(1):1–8

    Article  Google Scholar 

  • Yuan B, Zhai C, Wang WJ, Zeng XS, Xu XK, Hu HQ, Lin F, Wang L, Pan QH (2011) The Pik-p resistance to Magnaporthe oryzae in rice is mediated by a pair of closely linked CC-NBS-LRR genes. Theor Appl Genet 122(5):1017–1028

    Article  Google Scholar 

  • Yun CS, Motoyama T, Osada H (2015) Biosynthesis of the mycotoxin tenuazonic acid by a fungal NRPS-PKS hybrid enzyme. Nat Commun 6:8758

    Article  CAS  Google Scholar 

  • Zeng LR, Qu S, Bordeos A, Yang C, Baraoidan M, Yan H, Xie Q, Nahm BH, Leung H, Wang GL (2004) Spotted leaf 11, a negative regulator of plant cell death and defense, encodes a Ubox/armadillo repeat protein endowed with E3 ubiquitin ligase activity. Plant Cell 16:2795–2808

    Article  CAS  Google Scholar 

  • Zewdu Z (2021) Rice blast biology and reaction of host to the disease. World News Nat Sci 39:11–21

    CAS  Google Scholar 

  • Zhai J, Jeong DH, de Paoli E, Park S, Rosen BD, Li Y, González AJ, Yan Z, Kitto SL, Grusak MA, Jackson SA (2011a) MicroRNAs as master regulators of the plant NB-LRR defense gene family via the production of phased, trans-acting siRNAs. Genes Dev 25(23):2540–2553

    Article  CAS  Google Scholar 

  • Zhai C, Lin F, Dong ZQ, He XY, Yuan B, Zeng XS, Wang L, Pan QH (2011b) The isolation and characterization of Pik, a rice blast resistance gene which emerged after rice domestication. New Phytol 189(1):321–334

    Article  CAS  Google Scholar 

  • Zhai C, Zhang Y, Yao N, Lin F, Liu Z, Dong Z, Wang L, Pan Q (2014) Function and interaction of the coupled genes responsible for Pik-h encoded rice blast resistance. PLoS One 9:e98067

    Article  Google Scholar 

  • Zhan SW, Mayama S, Tosa Y (2008) Identification of two genes for resistance to Triticum isolates of Magnaporthe oryzae in wheat. Genome 51:216–221

    Article  CAS  Google Scholar 

  • Zhang S, Wang L, Wu W, He L, Yang X, Pan Q (2015) Function and evolution of Magnaporthe oryzae avirulence gene AvrPib responding to the rice blast resistance gene Pib. Sci Rep 5(1):1–10

    Google Scholar 

  • Zhang N, Luo J, Rossman AY, Aoki T, Chuma I, Crous PW, Dean R, de Vries RP, Donofrio N, Hyde KD, Lebrun M-H, Talbot NJ, Tharreau D, Tosa Y, Valent B, Wang Z, Xu J-R (2016) Generic names in Magnaporthales. IMA Fungus 7:155–159

    Article  Google Scholar 

  • Zhang X, Bao Y, Shan D, Wang Z, Song X, Wang Z, Wang J, He L, Wu L, Zhang Z, Niu D (2018) Magnaporthe oryzae induces the expression of a MicroRNA to suppress the immune response in rice. Plant Physiol 177(1):352–368

    Article  CAS  Google Scholar 

  • Zhang HF, Islam T, Liu WD (2022) Integrated pest management programme for cereal blast fungus Magnaporthe oryzae. J Integrat Agric. (in press)

    Google Scholar 

  • Zhao H, Wang X, Jia Y, Minkenberg B, Wheatley M, Fan J, Valent B (2018) The rice blast resistance gene Ptr encodes an atypical protein required for broad-spectrum disease resistance. Nat Commun 9:2039

    Article  Google Scholar 

  • Zhong Z, Norvienyeku J, Chen M, Bao J, Lin L, Chen L, Lin Y, Wu X, Cai Z, Zhang Q, Lin X, Hong Y, Huang J, Xu L, Zhang H, Chen L, Tang W, Zheng H, Chen X, Wang Y, Lian B, Zhang L, Tang H, Lu G, Ebbole DJ, Wang B, Wang Z (2016) Directional selection from host plants is a major force driving host specificity in Magnaporthe species. Sci Rep 6:25591

    Article  CAS  Google Scholar 

  • Zhou B, Qu S, Liu G, Dolan M, Sakai H, Lu G, Bellizzi M, Wang GL (2006) The eight amino-acid differences within three leucinerich repeats between Pi2 and Piz-t resistance proteins determine the resistance specificity to Magnaporthe grisea. Mol Plant-Microbe Interact 19(11):1216–1228

    Article  CAS  Google Scholar 

  • Zhou Y, Xu S, Jiang N, Zhao X, Bai Z, Liu J, Yao W, Tang Q, Xiao G, Lv C, Wang K, Hu X, Tan J, Yang Y (2021) Engineering of rice varieties with enhanced resistances to both blast and bacterial blight diseases via CRISPR/Cas9. Plant Biotechnol J. PMID: 34890109

    Google Scholar 

  • Zhu X, Chen S, Yang J, Zhou S, Zeng L, Han J, Su J, Wang L, Pan Q (2012) The identification of Pi50(t), a new member of the rice blast resistance Pi2/Pi9 multigene family. Theor Appl Genet 124:1295–1304

    Article  CAS  Google Scholar 

  • Zipfel C, Felix G (2005) Plants and animals: A different taste for microbes? Curr Opin Plant Biol 8(4):353–360

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Coordinated Research Project (D23032) of the International Atomic Energy Agency (IAEA, the Krishi Gobeshona Foundation (KGF) of Bangladesh under project No. KGF TF50-C/17 and GIFS-KGF/2021/01, and a project from the RMC of BSMRAU, Bangladesh.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tofazzal Islam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Islam, T., Ansary, M.W.R., Rahman, M.M. (2023). Magnaporthe oryzae and Its Pathotypes: A Potential Plant Pandemic Threat to Global Food Security. In: Scott, B., Mesarich, C. (eds) Plant Relationships. The Mycota, vol 5. Springer, Cham. https://doi.org/10.1007/978-3-031-16503-0_18

Download citation

Publish with us

Policies and ethics