Skip to main content

Role of Micronutrients in Neurological Development

  • Chapter
  • First Online:
Role of Nutrients in Neurological Disorders

Abstract

Food is an essential component for reinforcing the physical and mental health of an individual. Balanced nutrients are essential for normal body functions. Micronutrients such as vitamins (Vitamin-A, B12, B6, folate), minerals (iron, magnesium), and omega fatty acids have a crucial role in cognitive and neuronal function, as well as amelioration of neurological disorders. The production and storage capability of micronutrients inside the body decreases with age, and it needs to be supplemented externally through the diet. In contrast, the absence of micronutrients in the body leads to various neurological disorders. Pharmacological interventions for treating neurological disorders are restricted and are correlated with a notable risk of adverse events. Diet predominantly with micronutrient supplementation is recommended as a safe and effective way for ameliorating neurological disorders. Studies with supplementation of micronutrients have evolved from single-use vitamin/mineral to broad-spectrum micronutrients (BSM) in the ministration of neurological disorders. Suboptimal nutrition is the key to mental illness, and multi-micronutrient supplementation in addition to food intake could improve symptoms associated with neurological disorders. This chapter explains the importance of micronutrients in neurological development, the combination of micronutrient effects, recent studies on neurological disorders, improvements observed with single micronutrient supplementation, multi-nutrient supplementation, and also neuro-toxic effects of some heavy metals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

5-HTP:

5-Hydroxytryptophan

AD:

Alzheimer’s disease

ADHD:

Attention-deficit hyperactivity disorder

ALS:

Amyotrophic lateral sclerosis

ASD:

Autism spectrum disorder

BDNF:

Brain-derived neurotrophic and immunologic factors

BSM:

Broad-spectrum micronutrients

CHAP:

Chicago Health and Aging Project

CNS:

Central nervous systems

CSF:

Cerebrospinal fluid

DALYs:

Disability-adjusted life years

DHA:

Docosahexaenoic acid

DNA:

Deoxyribonucleic acid

GABA:

Gamma-aminobutyric acid

GBD:

Global Burden of Disease

GWS:

Gulf War syndrome

HD:

Huntington’s disease

IDA:

Iron deficiency anemia

LCPUFA:

Long chain poly unsaturated fatty acids

NMDA:

N-methyl-d-aspartate

NT3:

Neurotrophin 3

NTD:

Neural tube defects

OCD:

Obsessive-compulsive disorder

PD:

Parkinson’s disease

PUFA:

Polyunsaturated fatty acids

RA:

Retinoid acid

ROS:

Reactive oxygen species

SJW:

St. John’s wort

TK:

Transketolase

WD:

Wilson’s disease

WHO:

World Health Organization

References

  • Adams JB, Romdalvik J, Ramanujam VS, Legator MS (2007) Mercury, lead, and zinc in baby teeth of children with autism versus controls. J Toxicol Environ Health Part A 70(12):1046–1051

    CAS  Google Scholar 

  • Adebayo OL, Adenuga GA, Sandhir R (2014) Postnatal protein malnutrition induces neurochemical alterations leading to behavioral deficits in rats: prevention by selenium or zinc supplementation. Nutr Neurosci 17(6):268–278. https://doi.org/10.1179/1476830513Y.0000000090

    Article  CAS  PubMed  Google Scholar 

  • Andrasi E, Igaz S, Molnár Z, Mako S (2000) Disturbances of magnesium concentrations in various brain areas in Alzheimer’s disease. Magnes Res 13(3):189–196

    CAS  PubMed  Google Scholar 

  • Anjos T, Altmäe S, Emmett P, Tiemeier H, Closa-Monasterolo R, Luque V, Wiseman S, Pérez-García M, Lattka E, Demmelmair H (2013) Nutrition and neurodevelopment in children: focus on NUTRIMENTHE project. Eur J Nutr 52(8):1825–1842

    CAS  PubMed  Google Scholar 

  • BalmuÈ™ I-M, Strungaru S-A, Ciobica A, Nicoara M-N, Dobrin R, Plavan G, Ștefănescu C (2017) Preliminary data on the interaction between some biometals and oxidative stress status in mild cognitive impairment and Alzheimer’s disease patients. Oxidative Med Cell Longev 2017:1–7

    Google Scholar 

  • Bao Q-S, Lu C-Y, Song H, Wang M, Ling W, Chen W-Q, Deng X-Q, Hao Y-T, Rao S (2009) Behavioural development of school-aged children who live around a multi-metal sulphide mine in Guangdong Province, China: a cross-sectional study. BMC Public Health 9(1):1–8

    Google Scholar 

  • Bishak YK, Payahoo L, Osatdrahimi A, Nourazarian A (2015) Mechanisms of cadmium carcinogenicity in the gastrointestinal tract. Asian Pac J Cancer Prev 16(1):9–21

    PubMed  Google Scholar 

  • Blass JP, Gleason P, Brush D, DiPonte P, Thaler H (1988) Thiamine and Alzheimer’s disease: a pilot study. Arch Neurol 45(8):833–835

    CAS  PubMed  Google Scholar 

  • Bourre J-M (2006) Effects of nutrients (in food) on the structure and function of the nervous system: update on dietary requirements for brain. Part 1: micronutrients. J Nutr Health Aging 10(5):377

    CAS  PubMed  Google Scholar 

  • Chen P, Miah MR, Aschner M (2016) Metals and neurodegeneration. F1000Research 5

    Google Scholar 

  • Chmielewska A, Dziechciarz P, Gieruszczak-Bialek D, Horvath A, PieÅ›cik-Lech M, RuszczyÅ„ski M, Skórka A, Szajewska H (2019) Effects of prenatal and/or postnatal supplementation with iron, PUFA or folic acid on neurodevelopment: update. Br J Nutr 122(s1):S10–S15

    CAS  PubMed  Google Scholar 

  • Cui X, Pertile R, Liu P, Eyles DW (2015) Vitamin D regulates tyrosine hydroxylase expression: N-cadherin a possible mediator. Neuroscience 304:90–100

    CAS  PubMed  Google Scholar 

  • de Lau LML, Koudstaal PJ, Witteman JCM, Hofman A, Breteler MMB (2006) Dietary folate, vitamin B12, and vitamin B6 and the risk of Parkinson disease. Neurology 67(2):315–318. https://doi.org/10.1212/01.wnl.0000225050.57553.6d

    Article  CAS  PubMed  Google Scholar 

  • Di Somma C, Scarano E, Barrea L, Zhukouskaya VV, Savastano S, Mele C, Scacchi M, Aimaretti G, Colao A, Marzullo P (2017) Vitamin D and neurological diseases: an endocrine view. Int J Mol Sci 18(11):2482

    PubMed Central  Google Scholar 

  • Dror DK, Allen LH (2008) Effect of vitamin B12 deficiency on neurodevelopment in infants: current knowledge and possible mechanisms. Nutr Rev 66(5):250–255. https://doi.org/10.1111/j.1753-4887.2008.00031.x

    Article  PubMed  Google Scholar 

  • EsnafoÄŸlu E, Yaman E (2017) Vitamin B12, folic acid, homocysteine and vitamin D levels in children and adolescents with obsessive compulsive disorder. Psychiatry Res 254:232–237

    PubMed  Google Scholar 

  • Ezzati M, Lopez AD, Rodgers A, Hoorn SV, Murray CJL, Comparative Risk Assessment Collaborating Group (2002) Selected major risk factors and global and regional burden of disease. Lancet 360(9343):1347–1360

    PubMed  Google Scholar 

  • Fuentes-Albero M, Martínez-Martínez MI, Cauli O (2019) Omega-3 long-chain polyunsaturated fatty acids intake in children with attention deficit and hyperactivity disorder. Brain Sci 9(5):120

    CAS  PubMed Central  Google Scholar 

  • Gao Y, Sheng C, Xie R-h, Sun W, Asztalos E, Moddemann D, Zwaigenbaum L, Walker M, Wen SW (2016) New perspective on impact of folic acid supplementation during pregnancy on neurodevelopment/autism in the offspring children—a systematic review. PLoS One 11(11):e0165626

    PubMed  PubMed Central  Google Scholar 

  • Garcion E, Sindji L, Montero-Menei C, Andre C, Brachet P, Darcy F (1998) Expression of inducible nitric oxide synthase during rat brain inflammation: regulation by 1, 25-dihydroxyvitamin D3. Glia 22(3):282–294

    CAS  PubMed  Google Scholar 

  • Gasperi V, Sibilano M, Savini I, Catani MV (2019) Niacin in the central nervous system: an update of biological aspects and clinical applications. Int J Mol Sci 20(4). https://doi.org/10.3390/ijms20040974

  • Gorini F, Muratori F, Morales MA (2014) The role of heavy metal pollution in neurobehavioral disorders: a focus on autism. Rev J Autism Dev Disord 1(4):354–372

    Google Scholar 

  • Greenblatt J (2017) Mental health, OCD. Mental Health

    Google Scholar 

  • Haan MN, Miller JW, Aiello AE, Whitmer RA, Jagust WJ, Mungas DM, Allen LH, Green R (2007) Homocysteine, B vitamins, and the incidence of dementia and cognitive impairment: results from the Sacramento Area Latino Study on Aging. Am J Clin Nutr 85(2):511–517

    CAS  PubMed  Google Scholar 

  • Hammond N, Wang Y, Dimachkie M, Barohn R (2013) Nutritional neuropathies. Neurol Clin 31(2):477

    PubMed  PubMed Central  Google Scholar 

  • Holben DH, Smith AM (1999) The diverse role of selenium within selenoproteins: a review. J Am Diet Assoc 99(7):836–843

    CAS  PubMed  Google Scholar 

  • Hubbs-Tait L, Nation JR, Krebs NF, Bellinger DC (2005) Neurotoxicants, micronutrients, and social environments: individual and combined effects on children’s development. Psychol Sci Public Interest 6(3):57–121

    PubMed  Google Scholar 

  • Ishihara Y, Itoh K, Mitsuda Y, Shimada T, Kubota T, Kato C, Song SY, Kobayashi Y, Mori-Yasumoto K, Sekita S, Kirino Y (2013) Involvement of brain oxidation in the cognitive impairment in a triple transgenic mouse model of Alzheimer’s disease: noninvasive measurement of the brain redox state by magnetic resonance imaging. Free Radic Res 47(9):731–739

    CAS  PubMed  Google Scholar 

  • Jiang L-F, Yao T-M, Zhu Z-L, Wang C, Ji L-N (2007) Impacts of Cd (II) on the conformation and self-aggregation of Alzheimer’s tau fragment corresponding to the third repeat of microtubule-binding domain. Biochim Biophys Acta 1774(11):1414–1421

    CAS  PubMed  Google Scholar 

  • Jicha GA, Markesbery WR (2010) Omega-3 fatty acids: potential role in the management of early Alzheimer’s disease. Clin Interv Aging 5:45

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kaneko I, Sabir MS, Dussik CM, Kerr Whitfield G, Karrys A, Hsieh J-C, Haussier MR, Meyer MB, Wesley Pike J, Jurutka PW (2015) 1, 25-Dihydroxyvitamin D regulates expression of the tryptophan hydroxylase 2 and leptin genes: implication for behavioral influences of vitamin D. FASEB J 29(9):4023–4035

    CAS  PubMed  Google Scholar 

  • Kaplan BJ, Crawford SG, Field CJ, Steven J, Simpson A (2007) Vitamins, minerals, and mood. Psychol Bull 133(5):747

    PubMed  Google Scholar 

  • Karcı CK, Celik GG (2020) Nutritional and herbal supplements in the treatment of obsessive compulsive disorder. Gen Psychiatry 33(2):e100159

    Google Scholar 

  • Kennedy DO, Veasey RC, Watson AW, Dodd FL, Jones EK, Tiplady B, Haskell CF (2011) Vitamins and psychological functioning: a mobile phone assessment of the effects of a B vitamin complex, vitamin C and minerals on cognitive performance and subjective mood and energy. Hum Psychopharmacol Clin Exp 26(4–5):338–347. https://doi.org/10.1002/hup.1216

    Article  CAS  Google Scholar 

  • Kong WX, Chen SW, Li YL, Zhang YJ, Wang R, Min L, Mi X (2006) Effects of taurine on rat behaviors in three anxiety models. Pharmacol Biochem Behav 83(2):271–276

    CAS  PubMed  Google Scholar 

  • Kontush A, Mann U, Arlt S, Ujeyl A, Lührs C, Müller-Thomsen T, Beisiegel U (2001) Influence of vitamin E and C supplementation on lipoprotein oxidation in patients with Alzheimer’s disease. Free Radic Biol Med 31(3):345–354

    CAS  PubMed  Google Scholar 

  • Kretchmer N, Beard JL, Carlson S (1996) The role of nutrition in the development of normal cognition. Am J Clin Nutr 63(6):997S–1001S

    CAS  PubMed  Google Scholar 

  • Lozoff B, Brittenham GM (1987) Behavioral alterations in iron deficiency. Hematol/Oncol Clin North Am Pediatr Hematol 1(3):449–464. https://doi.org/10.1016/S0889-8588(18)30663-4

    Article  CAS  Google Scholar 

  • LÆ°Æ¡ng K, Nguyá»…n LTH (2013) The beneficial role of thiamine in Parkinson disease. CNS Neurosci Ther 19(7):461–468. https://doi.org/10.1111/cns.12078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maden M, Gale E, Zile M (1998) The role of vitamin-A in the development of the central nervous system. J Nutr 128(2):471S–475S

    CAS  PubMed  Google Scholar 

  • Madhubalaji CK, Rashmi V, Chauhan VS, Shylaja MD, Sarada R (2019) Improvement of vitamin B12 status with Spirulina supplementation in Wistar rats validated through functional and circulatory markers. J Food Biochem 43:e13038

    PubMed  Google Scholar 

  • Marashly ET, Bohlega SA (2017) Riboflavin has neuroprotective potential: focus on Parkinson’s disease and migraine. Front Neurol 8:333

    PubMed  PubMed Central  Google Scholar 

  • Mattei D, Pietrobelli A (2019) Micronutrients and brain development. Curr Nutr Rep 8(2):99–107

    CAS  PubMed  Google Scholar 

  • Maxwell PJ, Montgomery SC, Cavallazzi R, Martindale RG (2013) What micronutrient deficiencies should be considered in distinct neurological disorders? Curr Gastroenterol Rep 15(7):331. https://doi.org/10.1007/s11894-013-0331-7

    Article  PubMed  Google Scholar 

  • Medina MT (2007) Neurologic consequences of malnutrition, vol 6. Demos Medical Publishing

    Google Scholar 

  • Murakami K, Miyake Y, Sasaki S, Tanaka K, Fukushima W, Kiyohara C, Tsuboi Y, Yamada T, Oeda T, Miki T (2010) Dietary intake of folate, vitamin B6, vitamin B12 and riboflavin and risk of Parkinson’s disease: a case–control study in Japan. Br J Nutr 104(5):757–764

    CAS  PubMed  Google Scholar 

  • Naghashpour M, Amani R, Sarkaki A, Ghadiri A, Samarbafzadeh A, Jafarirad S, Malehi AS (2016) Brain-derived neurotrophic and immunologic factors: beneficial effects of riboflavin on motor disability in murine model of multiple sclerosis. Iran J Basic Med Sci 19(4):439

    PubMed  PubMed Central  Google Scholar 

  • Needleman HL (1988) The persistent threat of lead: medical and sociological issues. Curr Probl Pediatr 18(12):703–744

    Google Scholar 

  • Olson CR, Mello CV (2010) Significance of vitamin-A to brain function, behavior and learning. Mol Nutr Food Res 54(4):489–495

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pancheva-Dimitrova RZ, Toneva A, Georgieva M, Konstantinova D, Petrova S (2018) Nutritional status, macro-and micronutrient deficiency in children with neurodevelopmental disorders. Scr Sci Salut Publicae 4:7–14

    Google Scholar 

  • Park J-D, Zheng W (2012) Human exposure and health effects of inorganic and elemental mercury. J Prev Med Public Health 45(6):344

    PubMed  PubMed Central  Google Scholar 

  • Pillai R, Uyehara-Lock JH, Bellinger FP (2014) Selenium and selenoprotein function in brain disorders. IUBMB Life 66(4):229–239

    CAS  PubMed  Google Scholar 

  • Rucklidge JJ (2009) Successful treatment of OCD with a micronutrient formula following partial response to cognitive behavioral therapy (CBT): a case study. J Anxiety Disord 23(6):836–840

    PubMed  Google Scholar 

  • Santander N, Lizama C, Parga MJ, Quiroz A, Pérez D, Echeverría G, Ulloa L, Palma V, Rigotti A, Busso D (2017) Deficient vitamin E uptake during development impairs neural tube closure in mice lacking lipoprotein receptor SR-BI. Sci Rep 7(1):1–11

    CAS  Google Scholar 

  • Sayyah M, Olapour A, Saeedabad Y s, Parast RY, Malayeri A (2012) Evaluation of oral zinc sulfate effect on obsessive-compulsive disorder: a randomized placebo-controlled clinical trial. Nutrition 28(9):892–895

    CAS  PubMed  Google Scholar 

  • Schwartz J, Beyette B (1996) Brain lock: free yourself from obsessive-compulsive behavior: a four-step self-treatment method to change your brain chemistry. ReganBooks, New York

    Google Scholar 

  • Seamon M, Purohit S, Giri B, Baban B, Morgan J, Chong R, Wakade C (2020) Niacin for Parkinson’s disease. Clin Exp Neuroimmunol 11(1):47–56

    Google Scholar 

  • Seyedi M, Gholami F, Samadi M, Djalali M, Effatpanah M, Yekaninejad MS, Hashemi R, Abdolahi M, Chamari M, Honarvar NM (2019) The effect of vitamin D3 supplementation on serum BDNF, dopamine, and serotonin in children with attention-deficit/hyperactivity disorder. CNS Neurol Disord Drug Targets 18(6):496–501

    CAS  PubMed  Google Scholar 

  • Shohag H, Ullah A, Qusar S, Rahman M, Hasnat A (2012) Alterations of serum zinc, copper, manganese, iron, calcium, and magnesium concentrations and the complexity of interelement relations in patients with obsessive–compulsive disorder. Biol Trace Elem Res 148(3):275–280

    CAS  PubMed  Google Scholar 

  • Simpson JSA, Crawford SG, Goldstein ET, Field C, Burgess E, Kaplan BJ (2011) Systematic review of safety and tolerability of a complex micronutrient formula used in mental health. BMC Psychiatry 11(1):62. https://doi.org/10.1186/1471-244X-11-62

    Article  PubMed  PubMed Central  Google Scholar 

  • Szegedi A, Kohnen R, Dienel A, Kieser M (2005) Acute treatment of moderate to severe depression with hypericum extract WS 5570 (St John’s wort): randomised controlled double blind non-inferiority trial versus paroxetine. BMJ 330(7490):503

    CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor MR, Chuang C, Carrasco KD, Nagatomo S, Rucklidge JJ (2018) Dietary and micronutrient treatments for children with neurodevelopment disorders. Curr Dev Disord Rep 5(4):243–252

    Google Scholar 

  • Tulchinsky TH (2010) Micronutrient deficiency conditions: global health issues. Public Health Rev 32(1):243–255. https://doi.org/10.1007/BF03391600

    Article  Google Scholar 

  • Turanov AA, Lobanov AV, Hatfield DL, Gladyshev VN (2013) UGA codon position-dependent incorporation of selenocysteine into mammalian selenoproteins. Nucleic Acids Res 41(14):6952–6959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Valizadeh M, Valizadeh N (2011) Obsessive compulsive disorder as early manifestation of B12 deficiency. Indian J Psychol Med 33(2)

    Google Scholar 

  • Virit O, Selek S, Bulut M, Savas HA, Celik H, Erel O, Herken H (2008) High ceruloplasmin levels are associated with obsessive compulsive disorder: a case control study. Behav Brain Funct 4(1):52. https://doi.org/10.1186/1744-9081-4-52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Visioli F, Burgos-Ramos E (2016) Selected micronutrients in cognitive decline prevention and therapy. Mol Neurobiol 53(6):4083–4093

    CAS  PubMed  Google Scholar 

  • Wang B, Du Y (2013) Cadmium and its neurotoxic effects. Oxidative Med Cell Longev 2013

    Google Scholar 

  • Yazici KU, Yazici IP, Ustundag B (2018) Vitamin D levels in children and adolescents with obsessive compulsive disorder. Nord J Psychiatry 72(3):173–178

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ravikumar, N., Chegukrishnamurthi, M., Gadde Venkata, S. (2022). Role of Micronutrients in Neurological Development. In: Rajagopal, S., Ramachandran, S., Sundararaman, G., Gadde Venkata, S. (eds) Role of Nutrients in Neurological Disorders. Nutritional Neurosciences. Springer, Singapore. https://doi.org/10.1007/978-981-16-8158-5_9

Download citation

Publish with us

Policies and ethics