Skip to main content

Immersive Telepresence Framework for Remote Educational Scenarios

  • Conference paper
  • First Online:
Learning and Collaboration Technologies. Human and Technology Ecosystems (HCII 2020)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12206))

Included in the following conference series:

Abstract

Social robots have an enormous potential for educational applications, allowing cognitive outcomes similar to those with human involvement. Enabling instructors and learners to directly control a social robot and immersively interact with their students and peers opens up new possibilities for effective lesson delivery and better participation in the classroom.

This paper proposes the use of immersive technologies to promote engagement in remote educational settings involving robots. In particular, this research introduces a telepresence framework for the location-independent operation of a social robot using a virtual reality headset and controllers. Using the QTrobot as a platform, the framework supports the direct and immersive control via different interaction modes including motion, emotion and voice output. Initial tests involving a large audience of educators and students validate the acceptability and applicability to interactive classroom scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.oculus.com/rift/.

  2. 2.

    https://luxai.com/qtrobot-for-research/.

  3. 3.

    https://wiki.ros.org/rosbridge_suite/.

  4. 4.

    https://github.com/AIRobolab-unilu.

  5. 5.

    http://www.researchersdays.lu/.

References

  1. Adamides, G., Christou, G., Katsanos, C., Xenos, M., Hadzilacos, T.: Usability guidelines for the design of robot teleoperation: a taxonomy. IEEE Trans. Hum.-Mach. Syst. 45(2), 256–262 (2015)

    Article  Google Scholar 

  2. Baker, M., Casey, R., Keyes, B., Yanco, H.A.: Improved interfaces for human-robot interaction in urban search and rescue. In: Proceedings of the IEEE International Conference on Systems, Man and Cybernetics (SMC 2004), pp. 2960–2965 (2004)

    Google Scholar 

  3. de Barros, P.G., Linderman, R.W.: A survey of user interfaces for robot teleoperation. Technical report, Worcester Polytechnic Institute (2009). http://digitalcommons.wpi.edu/computerscience-pubs/21

  4. Bartneck, C., Soucy, M., Fleuret, K., Sandoval, E.B.: The robot engine - making the unity 3D game engine work for HRI. In: Proceedings of the 24th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN 2015), pp. 431–437 (2015)

    Google Scholar 

  5. Belpaeme, T., et al.: Child-robot interaction: perspectives and challenges. In: Herrmann, G., Pearson, M.J., Lenz, A., Bremner, P., Spiers, A., Leonards, U. (eds.) ICSR 2013. LNCS (LNAI), vol. 8239, pp. 452–459. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-02675-6_45

    Chapter  Google Scholar 

  6. Belpaeme, T., Ramachandran, A., Scassellati, B., Tanaka, F.: Social robots for education: a review. Sci. Robot. 3(21) (2018)

    Google Scholar 

  7. Benyon, D.: Designing Interactive Systems: A Comprehensive Guide to HCI, UX and Interaction Design. Pearson Edinburgh (2014)

    Google Scholar 

  8. Cha, E., Chen, S., Matarić, M.J.: Designing telepresence robots for K-12 education. In: 26th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN 2017), pp. 683–688 (2017)

    Google Scholar 

  9. Clabaugh, C., Matarić, M.: Escaping Oz: autonomy in socially assistive robotics. Ann. Rev. Control Robot. Auton. Syst. 2, 33–61 (2019)

    Article  Google Scholar 

  10. Codd-Downey, R., Forooshani, P.M., Speers, A., Wang, H., Jenkin, M.R.M.: From ROS to unity: leveraging robot and virtual environment middleware for immersive teleoperation. In: Proceedings of the 11th IEEE International Conference on Information and Automation (ICIA 2014), pp. 932–936 (2014)

    Google Scholar 

  11. Crooks, T.J.: The impact of classroom evaluation practices on students. Rev. Educ. Res. 58(4), 438–481 (1988)

    Article  Google Scholar 

  12. Draper, J.V., Kaber, D.B., Usher, J.M.: Telepresence. Hum. Factors 40(3), 354–375 (1998)

    Article  Google Scholar 

  13. Fong, T., Thorpe, C., Baur, C.: Collaboration, dialogue, human-robot interaction. In: Jarvis, R.A., Zelinsky, A. (eds.) Proceedings of the 10th International Symposium on Robotics Research (ISRR 2003), pp. 255–266 (2003)

    Google Scholar 

  14. Gallon, L., Abenia, A., Dubergey, F., Négui, M.: Using a telepresence robot in an educational context. In: Proceedings of the 10th International Conference on Frontiers in Education: Computer Science and Computer Engineering (FECS 2019), pp. 16–22 (2019)

    Google Scholar 

  15. Jecker, J.D., Maccoby, N., Breitrose, H.: Improving accuracy in interpreting non-verbal cues of comprehension. Psychol. Sch. 2(3), 239–244 (1965)

    Article  Google Scholar 

  16. Kilteni, K., Groten, R., Slater, M.: The sense of embodiment in virtual reality. Presence: Teleoperators Virtual Environ. 21(4), 373–387 (2012)

    Google Scholar 

  17. Meng, W., Hu, Y., Lin, J., Lin, F., Teo, R.: ROS+Unity: an efficient high-fidelity 3D multi-UAV navigation and control simulator in GPS-denied environments. In: 41st Annual Conference of the IEEE Industrial Electronics Society (IECON 2015), pp. 2562–2567 (2015)

    Google Scholar 

  18. Miller, D.P., Nourbakhsh, I.: Robotics for education. In: Siciliano, B., Khatib, O. (eds.) Springer Handbook of Robotics, pp. 2115–2134. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-32552-1_79

    Chapter  Google Scholar 

  19. Mubin, O., Stevens, C.J., Shahid, S., Al Mahmud, A., Dong, J.: A review of the applicability of robots in education. Technol. Educ. Learn. 1, 1–7 (2013)

    Article  Google Scholar 

  20. Okon, J.: Role of non-verbal communication in education. Mediterranean J. Soc. Sci. 2(5), 35–40 (2011)

    Google Scholar 

  21. Pasternak, E., Fenichel, R., Marshall, A.N.: Tips for creating a block language with blockly. In: Proceedings of the IEEE Blocks and Beyond Workshop (B&B 2017), pp. 21–24 (2017)

    Google Scholar 

  22. Rodríguez-Lera, F.J., Matellán-Olivera, V., Conde-González, M.Á., Martín-Rico, F.: HiMoP: a three-component architecture to create more human-acceptable social-assistive robots. Cogn. Process. 19(2), 233–244 (2018)

    Article  Google Scholar 

  23. Roldán, J.J., Peña-Tapia, E., Garzón-Ramos, D., de León, J., Garzón, M., del Cerro, J., Barrientos, A.: Multi-robot systems, virtual reality and ROS: developing a new generation of operator interfaces. In: Koubaa, A. (ed.) Robot Operating System (ROS). SCI, vol. 778, pp. 29–64. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-91590-6_2

    Chapter  Google Scholar 

  24. Schuemie, M.J., van der Straaten, P., Krijn, M., van der Mast, C.A.: Research on presence in virtual reality: a survey. CyberPsychol. Behav. 4(2), 183–201 (2001)

    Article  Google Scholar 

  25. Sita, E., Horváth, C.M., Thomessen, T., Korondi, P., Pipe, A.G.: ROS-Unity3D based system for monitoring of an industrial robotic process. In: Proceedings of the 10th IEEE/SICE International Symposium on System Integration (SII 2017), pp. 1047–1052 (2017)

    Google Scholar 

  26. Steuer, J.: Defining virtual reality: dimensions determining telepresence. J. Commun. 42(4), 73–93 (1992)

    Article  Google Scholar 

  27. Toh, L.P.E., Causo, A., Tzuo, P.W., Chen, I.M., Yeo, S.H.: A review on the use of robots in education and young children. J. Educ. Technol. Soc. 19(2), 148–163 (2016)

    Google Scholar 

  28. Tromp, N., Hekkert, P., Verbeek, P.P.: Design for socially responsible behavior: a classification of influence based on intended user experience. Des. Issues 27(3), 3–19 (2011)

    Article  Google Scholar 

  29. Tsui, K.M., Desai, M., Yanco, H.A.: Considering the bystander’s perspective for indirect human-robot interaction. In: Proceedings of the ACM/IEEE International Conference on Human-Robot Interaction (HRI 2010), pp. 129–130 (2010)

    Google Scholar 

  30. Tunstall, P., Gipps, C.: Teacher feedback to young children in formative assessment: a typology. Br. Educ. Res. J. 22(4), 389–404 (1996)

    Article  Google Scholar 

  31. Weiss, A., Bernhaupt, R., Lankes, M., Tscheligi, M.: The USUS evaluation framework for human-robot interaction. In: Proceedings of the Symposium on New Frontiers in Human-Robot Interaction at the Adaptive and Emergent Behaviour and Complex Systems Convention (AISB 2009), pp. 11–26 (2009)

    Google Scholar 

  32. Whitney, D., Rosen, E., Phillips, E., Konidaris, G., Tellex, S.: Comparing robot grasping teleoperation across desktop and virtual reality with ROS reality. In: Amato, N.M., Hager, G., Thomas, S., Torres-Torriti, M. (eds.) Robotics Research. SPAR, vol. 10, pp. 335–350. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-28619-4_28

    Chapter  Google Scholar 

  33. Whitney, J.P., Chen, T., Mars, J., Hodgins, J.K.: A hybrid hydrostatic transmission and human-safe haptic telepresence robot. In: 22nd IEEE International Conference on Robotics and Automation (ICRA 2016), pp. 690–695 (2016)

    Google Scholar 

  34. Yanco, H.A., Drury, J.: Classifying human-robot interaction: an updated taxonomy. In: Proceedings of the IEEE International Conference on Systems, Man and Cybernetics (ICSMC 2004), vol. 3, pp. 2841–2846 (2004)

    Google Scholar 

  35. Zhang, M., Duan, P., Zhang, Z., Esche, S.: Development of telepresence teaching robots with social capabilities. In: Proceedings of the ASME International Mechanical Engineering Congress and Exposition (IMECE 2018), pp. 1–11 (2018)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Thomas Sauvage and Julien Sanchez from the University of Toulouse III - Paul Sabatier, who assisted in this research in the context of an internship at the University of Luxembourg.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Botev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Botev, J., Rodríguez Lera, F.J. (2020). Immersive Telepresence Framework for Remote Educational Scenarios. In: Zaphiris, P., Ioannou, A. (eds) Learning and Collaboration Technologies. Human and Technology Ecosystems. HCII 2020. Lecture Notes in Computer Science(), vol 12206. Springer, Cham. https://doi.org/10.1007/978-3-030-50506-6_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-50506-6_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-50505-9

  • Online ISBN: 978-3-030-50506-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics