Skip to main content
Log in

Hydrogen peroxide detoxifying enzymes show different activity patterns in host and non-host plant interactions with Magnaporthe oryzae Triticum pathotype

  • Research Article
  • Published:
Physiology and Molecular Biology of Plants Aims and scope Submit manuscript

Abstract

Wheat blast caused by the hemibiotroph fungal pathogen Magnaporthe oryzae Triticum (MoT) pathotype is a destructive disease of wheat in South America, Bangladesh and Zambia. This study aimed to determine and compare the activities of antioxidant enzymes in susceptible (wheat, maize, barley and swamp rice grass) and resistant (rice) plants when interacting with MoT. The activities of reactive oxygen species-detoxifying enzymes; catalase (CAT), ascorbate peroxidase (APX), glutathione peroxidase (GPX), glutathione S-transferase (GST), peroxidase (POX) were increased in all plants in response to MoT inoculation with a few exceptions. Interestingly, an early and very high activity of CAT was observed within 24 h after inoculation in wheat, barley, maize and swamp rice grass with lower H2O2 concentration. In contrast, an early and high accumulation of H2O2 was observed in rice at 48 hai with little CAT activity only at a later stage of MoT inoculation. The activities of APX, GST and POD were also high at an early stage of infection in rice. However, these enzymes activities were very high at a later stage in wheat, barley, maize and swamp rice grass. The activity of GPX gradually decreased with the increase of time in rice. Taken together, our results suggest that late and early inductions of most of the antioxidant enzyme activities occurs in susceptible and resistant plants, respectively. This study demonstrates some insights into physiological responses of host and non-host plants when interacting with the devastating wheat blast fungus MoT, which could be useful for developing blast resistant wheat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Able AJ (2003) Role of reactive oxygen species in the response of barley to necrotrophic pathogens. Protoplasma 221:137–143

    Article  CAS  PubMed  Google Scholar 

  • Aghnoum R, Bvindi C, Menet G, D’hoop B, Maciel JLN, Niks RE (2019) Host/nonhost status and genetics of resistance in barley against three pathotypes of Magnaporthe blast fungi. Euphytica 215:116

    Article  Google Scholar 

  • Agrawal GK, Rakwal R, Jwa NS, Agrawal VP (2002) Effects of signaling molecules, protein phosphatase inhibitors and blast pathogen (Magnaporthe grisea) on the mRNA level of a rice (Oryza sativa L.) phospholipid hydroperoxide glutathione peroxidase (OsPHGPX) gene in seedling leaves. Gene 283:227–236

    Article  CAS  PubMed  Google Scholar 

  • Agrawal GK, Jwa NS, Iwahashi H, Rakwal R (2003) Importance of ascorbate peroxidase OsAPX1 and OsAPX2 in the rice pathogen response pathways and growth and reproduction revealed by their transcriptional profiling. Gene 322:93–103

    Article  CAS  PubMed  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  PubMed  Google Scholar 

  • Araujo L, Soares JM, de Filippi MCC, Rodrigues FA (2016) Cytological aspects of incompatible and compatible interactions between rice, wheat and the blast pathogen Pyricularia oryzae. Sci Agric 73:177–183

    Article  CAS  Google Scholar 

  • Bela K, Horváth E, Gallé Á, Szabados L, Tari I, Csiszár J (2015) Plant glutathione peroxidases: emerging role of the antioxidant enzymes in plant development and stress responses. J Plant Physiol 176:192–201

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Ceresini PC, Castroagudín PL, Rodrigues FA, Rios JA, Aucique- Pérez CE, Moreira SI, Croll D, Alves E, de Carvalho G, Maciel JLN, McDonald BA (2019) Wheat blast: from its origins in South America to its emergence as a global threat. Mol Plant Pathol 20:155–172

    Article  PubMed  Google Scholar 

  • Chanda SC, Khan MJ, Sarker SC, Sarwar AKMG, Paul SK (2021) Crop-weed association in different field crops at Sirajganj district in Bangladesh. J Bangladesh Agric Univ 19:215–222

    Google Scholar 

  • Cruz CD, Kiyuna J, Bockus WW, Todd TC, Stack JP, Valent B (2015) Magnaporthe oryzae conidia on basal wheat leaves a potential source of wheat blast inoculum. Plant Pathol 64:1491–1498

    Article  CAS  Google Scholar 

  • Dean JD, Goodwin PH, Hsiang T (2005) Induction of glutathione S-transferase genes of Nicotiana benthamiana following infection by Colletotrichum destructivum and C. orbiculare and involvement of one in resistance. J Exp Bot 56:1525–1533

    Article  CAS  PubMed  Google Scholar 

  • Debona D, Rodrigues FA, Rios JA, Nascimento KJT (2012) Biochemical changes in the leaves of wheat plants infected by Pyricularia oryzae. Biochem Cell Biol 102:1121–1129

    CAS  Google Scholar 

  • Del Río LA (2015) ROS and RNS in plant physiology: an overview. J Expt Bot 66:2827–2837

    Article  CAS  Google Scholar 

  • Dorigan AF, de Carvalho G, Poloni NM, Negrisoli MM, Maciel JLN, Ceresini PC (2019) Resistance to triazole fungicides in Pyricularia species is associated with invasive plants from wheat fields in Brazil. Acta Sci Agron 41:e39332

    Article  Google Scholar 

  • Durante LGY, Maria L, Bacchi A, de Souza JE, Graichen FAS (2018) Reaction of wheat plants and alternative hosts to Magnaporthe oryzae. Arq Inst Biol 85:1–6

    Article  Google Scholar 

  • Farman M, Peterson G, Chen L, Starnes J, Valent B, Bachi P, Murdock L, Hershman D, Pedley K, Fernandes JM, Bavaresco J (2017) The Lolium pathotype of Magnaporthe oryzae recovered from a single blasted wheat plant in the United States. Plant Dis 101:684–692

    Article  CAS  PubMed  Google Scholar 

  • Foyer CH, Noctor G (2009) Redox regulation in photosynthetic organisms: signaling, acclimation, and practical implications. Antioxid Redox Signal 11:861–905

    Article  CAS  PubMed  Google Scholar 

  • García-Caparrós P, De Filippis L, Gul A, Hasanuzzaman M, Ozturk M, Altay V, Lao MT (2020) Oxidative stress and antioxidant metabolism under adverse environmental conditions: a review. Bot Rev. https://doi.org/10.1007/s12229-020-09231-1

    Article  Google Scholar 

  • Gechev TS, Van Breusegem F, Stone JM, Denev I, Laloi C (2006) Reactive oxygen species as signals that modulate plant stress responses and programmed cell death. BioEssays 28:1091–1101

    Article  CAS  PubMed  Google Scholar 

  • Gullner G, Komives T, Király L, Schröder P (2018) Glutathione S-transferase enzymes in plant-pathogen interactions. Front Plant Sci 9:1836

    Article  PubMed  PubMed Central  Google Scholar 

  • Gupta DR, Surovy MZ, Mahmud NU, Chakrabarty M, Paul SK, Hossain MS, Bhattacharjee P, Mehbub MS, Rani K, Yeasmin R, Rahman M, Islam MT (2020) Suitable methods for isolation, culture, storage and identification of wheat blast fungus Magnaporthe oryzae Triticum pathotype. Phytopathol Res 2:30

    Article  Google Scholar 

  • Ha X, Koopmann B, von Tiedemann A (2016) Wheat blast and fusarium head blight display contrasting interaction patterns on ears of wheat genotypes differing in resistance. Phytopathology 106:270–281

    Article  CAS  PubMed  Google Scholar 

  • Hasanuzzaman M, Hossain MA, Fujita M (2011) Selenium-induced up-regulation of the antioxidant defense and methylglyoxal detoxification system reduces salinity-induced damage in rapeseed seedlings. Biol Trace Elem Res 143:1704–1721

    Article  CAS  PubMed  Google Scholar 

  • Hasanuzzaman M, Bhuyan MHMB, Parvin K, Bhuiyan TF, Anee TI, Nahar K, Hossen MS, Zulfiqar F, Alam MM, Fujita M (2020a) Regulation of ROS metabolism in plants under environmental stress: a review of recent experimental evidence. Int J Mol Sci 21:8695

    Article  CAS  PubMed Central  Google Scholar 

  • Hasanuzzaman M, Bhuyan MHMB, Zulfiqar F, Raza A, Mohsin SM, Mahmud JA, Fujita M, Fotopoulos V (2020b) Reactive oxygen species and antioxidant defense in plants under abiotic stress: revisiting the crucial role of a universal defense regulator. Antioxidants 9:681

    Article  CAS  PubMed Central  Google Scholar 

  • Havelda Z, Maule AJ (2000) Complex spatial responses to cucumber mosaic virus infection in susceptible Cucurbita pepo cotyledons. Plant Cell 12:1975–1985

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hemeda HM, Klein BP (1990) Effects of naturally occurring antioxidants on peroxidase activity of vegetable extracts. J Food Sci 55:184–185

    Article  CAS  Google Scholar 

  • Hernández I, Chacón O, Rodriguez R, Portieles R, López Y, Pujol M, Borrás-Hidalgo O (2009) Black shank resistant tobacco by silencing of glutathione S-transferase. Biochem Biophys Res Commun 387:300–304

    Article  PubMed  CAS  Google Scholar 

  • Inoue Y, Vy TTP, Yoshida K, Asano H, Mitsuoka C, Asuke S, Anh VL, Cumagun CJR, Chuma I, Terauchi R, Kato K, Mitchell T, Valent B, Farman M, Tosa Y (2017) Evolution of the wheat blast fungus through functional losses in a host specificity determinant. Science 357:80–83

    Article  CAS  PubMed  Google Scholar 

  • Islam MT, Croll D, Gladieux P, Soanes DM, Persoons A, Bhattacharjee P, Hossain MS, Gupta DR, Rahman MM, Mahboob MG, Cook N, Salam MU, Surovy MZ, Sancho VB, Maciel JLN, NhaniJúnior A, Castroagudín VL, de Assis Reges JT, Ceresini PC, Ravel S, Kellner R, Fournier E, Tharreau D, Lebrun MH, McDonald BA, Stitt T, Swan D, Talbot NJ, Saunders DGO, Win J, Kamoun S (2016) Emergence of wheat blast in Bangladesh was caused by a South American lineage of Magnaporthe oryzae. BMC Biol 14:84

    Article  PubMed  PubMed Central  Google Scholar 

  • Islam MT, Gupta DR, Hossain A, Roy KK, He X, Kabir MR, Singh PK, Khan MAR, Rahman M, Wang GL (2019a) Wheat blast: a new threat to food security. Phytopathol Res 2:28

    Article  Google Scholar 

  • Islam MT, Kim KH, Choi J (2019b) Wheat blast in Bangladesh: the current situation and future impacts. Plant Pathol J 35:1–10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacob J, Pusuluri M, Domathoti B, Das IK (2018) Magnaporthe grisea infection modifies expression of anti-oxidant genes in finger millet (Eleusine coracana (L.) Gaertn.). J Plant Pathol. https://doi.org/10.1007/s42161-018-0162-3

    Article  Google Scholar 

  • Jia Y, Gealy D, Lin MJ, Wu L (2008) Carolina foxtail (Alopecurus carolinianus): susceptibility and suitability as an alternative host to rice blast disease (Magnaporthe oryzae (formerly M. grisea)). Plant Dis 92:504–508

    Article  CAS  PubMed  Google Scholar 

  • Kamoun S, Talbot NJ, Islam MT (2019) Plant health emergencies demand open science: tackling a cereal killer on the run. PLoS Biol 17:e3000302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kärkönen A, Kuchitsu K (2015) Reactive oxygen species in cell wall metabolism and development in plants. Phytochemistry 112:22–32

    Article  PubMed  CAS  Google Scholar 

  • KuZniak E, Skłodowska M (2005) Fungal pathogen-induced changes in the antioxidant systems of leaf peroxisomes from infected tomato plants. Planta 222:192–200

    Article  CAS  PubMed  Google Scholar 

  • Lamb C, Dixon RA (1997) The oxidative burst in plant disease resistance. Annu Rev Plant Physiol Plant Mol Biol 48:251–275

    Article  CAS  PubMed  Google Scholar 

  • Lee HA, Lee HY, Seo E, Lee J, Kim SB, Oh S, Choi E, Lee SE, Choi D (2017) Current understandings of plant nonhost resistance. Mol Plant Microb Interact 30:5–15

    Article  CAS  Google Scholar 

  • Levine A, Tenhaken R, Dixon R, Lamb C (1994) H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell 79:583–593

    Article  CAS  PubMed  Google Scholar 

  • Maciel JLN, Ceresini PC, Castroagudin VL, Zala M, Kema GH, McDonald BA (2014) Population structure and pathotype diversity of the wheat blast pathogen Magnaporthe oryzae 25 years after its emergence in Brazil. Phytopathology 104:95–107

    Article  PubMed  CAS  Google Scholar 

  • Magbanua ZV, De Moraes CM, Brooks TD, Williams WP, Luthe DS (2007) Is catalase activity one of the factors associated with maize resistance to Aspergillus flavus? Mol Plant Microb Interact 20:697–706

    Article  CAS  Google Scholar 

  • Martinez SI, Wegner A, Bohnert S, Schaffrath U, Perelló A (2021) Tracing seed to seedling transmission of the wheat blast pathogen Magnaporthe oryzae pathotype Triticum. Plant Pathol. https://doi.org/10.1111/ppa.13400

    Article  Google Scholar 

  • Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R (2010) Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ 33:453–467

    Article  CAS  PubMed  Google Scholar 

  • Mittler R, Vanderauwera S, Suzuki N, Miller G, Tognetti VB, Vandepoele K, Gollery M, Shulaev V, Van Breusegem F (2011) ROS signalling: the new wave? Trends Plant Sci 16:300–309

    Article  CAS  PubMed  Google Scholar 

  • Mohi-Ud-Din M, Siddiqui N, Rohman M, Jagadish SVK, Ahmed JU, Hassan MM, Hossain A, Islam T (2021) Physiological and biochemical dissection reveals a trade-off between antioxidant capacity and heat tolerance in bread wheat (Triticum aestivum L.). Antioxidants 10(3):351. https://doi.org/10.3390/antiox10030351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moniruzzaman M, Karim MK, Alam QM (2009) Agro-economic analysis of maize production in Bangladesh: a farm level study. Bangladesh J Agric Res 34:15–24

    Article  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Poudel A, Navathe S, Chand R, Mishra V, Singh P, Joshi A (2019) Hydrogen peroxide prompted lignification affects pathogenicity of hemi-biotrophic pathogen Bipolaris sorokiniana to wheat (Triticum aestivum L.). Plant Pathol J 35:287–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quan LJ, Zhang B, Shi WW, Li HY (2008) Hydrogen peroxide in plants: a versatile molecule of the reactive oxygen species network. J Integr Plant Biol 50:2–18

    Article  CAS  PubMed  Google Scholar 

  • Roy KK, Reza MMA, Muzahid-E-Rahman M, Mustarin KE, Malakar PK, Barma NCD, He X, Singh PK (2021) First report of barley blast caused by Magnaporthe oryzae pathotype Triticum (MoT) in Bangladesh. J Gen Plant Pathol 87:184–191.

    Article  CAS  Google Scholar 

  • Shetty NP, Mehrabi R, Lütken H, Haldrup A, Kema GHJ, Collinge DB, Jørgensen HJL (2007) Role of hydrogen peroxide during the interaction between the hemibiotrophic fungal pathogen Septoria tritici and wheat. New Phytol 174:637–647

    Article  CAS  PubMed  Google Scholar 

  • Surovy MZ, Mahmud NU, Bhattacharjee P, Hossain MS, Mehebub MS, Rahman M, Majumdar BC, Gupta DR, Islam T (2020) Modulation of nutritional and biochemical properties of wheat grains infected by blast fungus Magnaporthe oryzae Triticum pathotype. Front Microbiol 11:1174. https://doi.org/10.3389/fmicb.2020.01174

    Article  PubMed  PubMed Central  Google Scholar 

  • Tembo B, Mulenga RM, Sichilima S, M’siska KK, Mwale M, Chikoti PC, Singh PK, Pedley KF, Peterson GL, Singh RP, Braun HJ (2020) Detection and characterization of fungus (Magnaporthe oryzae pathotype Triticum) causing wheat blast disease on rain-fed grown wheat (Triticum aestivum L.) in Zambia. PLoS ONE 15:e0238724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torres MA (2010) ROS in biotic interactions. Physiol Plant 138:414–429

    Article  CAS  PubMed  Google Scholar 

  • Urashima AS, Igarashi S, Kato H (1993) Host range, mating type and fertility of Pyricularia grisea from wheat in Brazil. Plant Dis 77:1211–1216

    Article  Google Scholar 

  • Urashima AS, Stabili A, Galbieri R (2005) DNA fingerprinting and sexual characterization revealed two distinct populations of Magnaporthe grisea in wheat blast from Brazil. Czech J Genet Plant Breed 41:238–245

    Article  Google Scholar 

  • Vales MJ, Huallpa B, Anzoátegui T, Mostacedo B, Cazon MI (2016) Efficient breeding strategy for wheat blast disease resistance in Bolivia—use of the experience acquired on rice blast. In: Del Ponte EM, Bergstrom GC, Pavan W, Lazzaretti A, Fernandes JMC (eds) Book of abstracts, 5th international symposium on Fusarium head blight and 2nd international workshop on wheat blast, Florianopolis, SC, Brazil. Universidad de Passo Fundo, Passo Fundo, p 130

    Google Scholar 

  • Yao N, Imai S, Tada Y, Nakayashiki H, Tosa Y, Park P, Mayama S (2002) Apoptotic cell death is a common response to pathogen attack in oats. Mol Plant Microb Interact 15:1000–1007

    Article  CAS  Google Scholar 

  • Yu CW, Murphy TM, Lin CH (2003) Hydrogen peroxide-induces chilling tolerance in mung beans mediated through ABA-independent glutathione accumulation. Funct Plant Biol 30:955–963

    Article  CAS  PubMed  Google Scholar 

  • Zhan SW, Mayama S, Tosa Y (2008) Identification of two genes for resistance to Triticum isolates of Magnaporthe oryzae in wheat. Genome 51:216–221

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Grants from the Krishi Gobeshona Foundation (KGF), Bangladesh Project No. TF50-C/17 and the IAEA/FAO CRP code: D23032.

Author information

Authors and Affiliations

Authors

Contributions

TI Conceptualized and supervised. DRG, SK, MZS, MRI and MMR conducted the experiments. DRG, NUM, ARS and MH analyzed the data. DRG prepared the original draft. TI, MH, KAA, MR and DRG edited the manuscript. All authors have read and approved the manuscript.

Corresponding author

Correspondence to Tofazzal Islam.

Ethics declarations

Conflict of interest

The authors declare declare no conflict of interests.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, D.R., Khanom, S., Rohman, M.M. et al. Hydrogen peroxide detoxifying enzymes show different activity patterns in host and non-host plant interactions with Magnaporthe oryzae Triticum pathotype. Physiol Mol Biol Plants 27, 2127–2139 (2021). https://doi.org/10.1007/s12298-021-01057-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12298-021-01057-4

Keywords

Navigation