Skip to main content

Advertisement

Log in

A review of carbon sink or source effect on artificial reservoirs

  • Review
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

The inland water system is a key conduit in transporting carbon from land to ocean, but this conduit is not a neutral pipeline because it releases greenhouse gases into the atmosphere and also stores carbon in sediment. Currently, the role of inland waters in the global carbon cycle is modified and complicated by the huge number of reservoirs that are associated with climatic alteration due to their carbon sequestration and greenhouse gas emission functions. Moreover, reservoirs are distinct from natural rivers and lakes in various ways, promoting the emission of greenhouse gases from their surfaces and carbon accumulation in sediment through high sedimentation rates and larger ratios of watershed areas to reservoir areas. Consequently, their contributions to the global carbon cycle will increase in the coming decade as a result of an increase in the number of reservoirs. This assessment (1) demonstrates that reservoirs play a significant role in carbon burial and greenhouse gas emissions, (2) defines factors that influence the carbon budget of reservoirs, and (3) explains how reservoirs affect global climatic change. According to previous findings, reservoirs could serve as carbon sinks or sources, depending on the age, location, and climate of the given reservoir. Further, the magnitude of carbon burial and greenhouse gas emissions in reservoirs depends on productivity, land use, geology, water body type, and watershed morphometry. So far, few studies have examined both carbon storage and greenhouse gas emissions in reservoirs, and many efforts to quantify burial and emissions have been compromised by limited data availability. In this review, we mainly focus on recent literature on carbon burial and greenhouse gas emissions in reservoirs and global estimates of terrestrial carbon input to inland waters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abril G et al (2005) Carbon dioxide and methane emissions and the carbon budget of a 10-year old tropical reservoir (Petit Saut, French Guiana). Glob Biogeochem Cycles 19:GB4007

    Article  CAS  Google Scholar 

  • Alam S (1999) The influence and management of sediment at hydro projects. Hydropower Dams 3:54–57

    Google Scholar 

  • Alemu MM (2016) Integrated watershed management and sedimentation. J Environ Prot 7(4):490–494

    Article  Google Scholar 

  • Barros N et al (2011) Carbon emission from hydroelectric reservoirs linked to reservoir age and latitude. Nat Geosci 4:593–596

    Article  CAS  Google Scholar 

  • Basson GR (2009) Management of siltation in existing and new reservoirs. In: General report Q. 89. Proceedings of the 23rd congress of the international commission on Large Dams CIGB-ICOLD, p 2

  • Bastien J et al (2011) CO2 and CH4 diffusive and degassing emissions from 2003 to 2009 at Eastmain 1 hydroelectric reservoir, Québec, Canada. Inland Waters 1:113–123

    Article  CAS  Google Scholar 

  • Battin TJ et al (2009) The boundless carbon cycle. Nat Geosci 2:598–600

    Article  CAS  Google Scholar 

  • Bengtsson L et al (2012) Encyclopedia of lakes and reservoirs. Earth Sci Geogr 1:113–123

    Google Scholar 

  • Borges AV et al (2015) Globally significant greenhouse-gas emissions from African inland waters. Nat Geosci 8:637–642

    Article  CAS  Google Scholar 

  • Catalán N et al (2016) Organic carbon decomposition rates controlled by water retention time across inland waters. Nat Geosci 9:501–506

    Article  CAS  Google Scholar 

  • Clow DW et al (2015) Organic carbon burial in lakes and reservoirs of the conterminous United States. Environ Sci Technol 49:7614–7622

    Article  CAS  Google Scholar 

  • Cole JJ et al (2007) Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10:171–184

    Article  CAS  Google Scholar 

  • Dean WE, Gorham E (1998) Magnitude and significance of carbon burial in lakes, reservoirs, and peatlands. Geology 26:535–538

    Article  Google Scholar 

  • Deemer BR et al (2016) Greenhouse gas emissions from reservoir water surfaces: a new global synthesis. Bioscience 66:949–964

    Article  Google Scholar 

  • DelSontro T et al (2010) Extreme methane emissions from a Swiss hydropower reservoir: contribution from bubbling sediments. Environ Sci Technol 44:2419–2425

    Article  CAS  Google Scholar 

  • Downing JA et al (2008) Sediment organic carbon burial in agriculturally eutrophic impoundments over the last century. Glob Biogeochem Cycles 22(1):GB1018

    Article  CAS  Google Scholar 

  • Downing JA et al (2006) The global abundance and size distribution of lakes, ponds, and impoundments. Limnol Oceanogr 51(5):2388–2397

    Article  Google Scholar 

  • Drake TW et al (2017) Terrestrial carbon inputs to inland waters: a current synthesis of estimates and uncertainty. Limnol Oceanogr Lett 3:132–142

    Article  CAS  Google Scholar 

  • Duchemin E (2000) Hydroelectricity and greenhouse gases: Emission evaluation and identification of biochemical processes responsible for their production. Ph.D. dissertation, University of Québec at Montréal, Montréal, Québec, Canada

  • Einsele G et al (2001) Atmospheric carbon burial in modern lake basins and its significance for the global carbon budget. Glob Planet Change 30:167–195

    Article  Google Scholar 

  • Faghihirad S et al (2015) Application of a 3D layer integrated numerical model of flow and sediment transport processes to a reservoir. Water 7(10):5239–5257

    Article  Google Scholar 

  • Fan J, Morris GL (1992a) Reservoir sedimentation I: delta and density current deposits. J Hydraul Eng 118(3):354–369

    Article  Google Scholar 

  • Fan J, Morris GL (1992b) Reservoir sedimentation II: reservoir desiltation and long-term storage capacity. J Hydraul Eng 118(3):370–384

    Article  Google Scholar 

  • Friedl G, Wüest A (2002) Disrupting biogeochemical cycles—consequences of damming. Aquat Sci 64(1):55–65

    Article  CAS  Google Scholar 

  • GRAND (2011) Global reservoir and dam database (GRAND). www.gwsp.org/85.html, http://sedac.ciesin.columbia.edu/pfs/grand.html. Accessed Sept 2017

  • Grant G et al (2005) A geological framework for interpreting downstream effects of dams on rivers. Water Sci Appl 7:209–225

    Google Scholar 

  • Gudasz C et al (2010) Temperature-controlled organic carbon mineralization in lake sediments. Nature 466(7305):478–481

    Article  CAS  Google Scholar 

  • Gudasz C et al (2012) Constrained microbial processing of allochthonous organic carbon in boreal lake sediments. Limnol Oceanogr 57(1):163–175

    Article  CAS  Google Scholar 

  • Han Q et al (2017) Carbon biogeochemical cycle is enhanced by damming in a karst river. Sci Total Environ 616–617(2018):1181–1189

    Google Scholar 

  • Hanson PC et al (2003) Lake metabolism: relationships with dissolved organic carbon and phosphorous. Limnol Oceanogr 48(3):1112–1119

    Article  CAS  Google Scholar 

  • Hertwich EG (2013) Addressing biogenic greenhouse gas emissions from hydropower in LCA. Environ Sci Technol 47:9604–9611

    Article  CAS  Google Scholar 

  • Holgerson MA, Raymond PA (2016) Large contribution to inland water CO2 and CH4 emissions from very small ponds. Nat Geosci 9:222–226

    Article  CAS  Google Scholar 

  • Huttunen JT et al (2006) Methane fluxes at the sediment-water interface in some boreal lakes and reservoirs. Boreal Environ Res 11:27–34

    CAS  Google Scholar 

  • Jansson M et al (2000) Allochthonous organic carbon and phytoplankton/bacterioplankton production relationships in lakes. Ecology 81(11):3250–3255

    Article  Google Scholar 

  • Juracek KE (2015) The aging of America’s Reservoirs: in-reservoir and downstream physical changes and habitat implications. J Am Water Resour Assoc 51(1):168–184

    Article  Google Scholar 

  • Kastowski M et al (2011) Long-term carbon burial in European lakes: analysis and estimate. Glob Biogeochem Cycles 25(3):GB3019

    Article  CAS  Google Scholar 

  • Kelly CA et al (1997) Increases in fluxes of greenhouse gases and methyl mercury following flooding of an experimental reservoir†. Environ Sci Technol 31:1334–1344

    Article  CAS  Google Scholar 

  • Kemenes A et al (2011) CO2 emissions from a tropical hydroelectric reservoir (Balbina, Brazil). J Geophys Res 116:G03004

    Article  CAS  Google Scholar 

  • Kemp P et al (2011) The impacts of fine sediment on riverine fish. Hydrol Process 25:1800–1821

    Article  Google Scholar 

  • Knoll LB et al (2013) Temperate reservoirs are large carbon sinks and small CO2 sources: results from high-resolution carbon budgets. Glob Biogeochem Cycles 27:52–64

    Article  CAS  Google Scholar 

  • Kondof GM (1997) Hungry water: effects of dams and gravel mining on river channels. Environ Manag 21(4):533–551

    Article  Google Scholar 

  • Kunz MJ et al (2011) Sediment accumulation and carbon, nitrogen, and phosphorus deposition in the large tropical reservoir Lake Kariba (Zambia/Zimbabwe). Geophys Res 116:G03003

    Google Scholar 

  • Lehner B et al (2011) High-resolution mapping of the world’s reservoirs and dams for sustainable river-flow management. Front Ecol Environ 9:494–502

    Article  Google Scholar 

  • Li S, Zhang Q (2014) Carbon emission from global hydroelectric reservoirs revisited. Environ Sci Pollut Res 21:13636–13641

    Article  CAS  Google Scholar 

  • Li S et al (2015) Methane and CO2 emissions from China’s hydroelectric reservoirs: a new quantitative synthesis. Environ Sci Pollut Res 22:5325–5339

    Article  CAS  Google Scholar 

  • Mendonca R et al (2014) Carbon sequestration in a large hydroelectric reservoir: an integrative seismic approach. Ecosystem 17:430–441

    Article  CAS  Google Scholar 

  • Mendonca R et al (2015) Organic carbon burial efficiency in a large tropical hydroelectric reservoir. Biogeosci Discuss 12:18513–18540

    Article  Google Scholar 

  • Merz JE et al (2006) Sediment budget for salmonid spawning habitat rehabilitation in a regulated river. Geomorphology 76:207–228

    Article  Google Scholar 

  • Meybeck M (1993) Riverine transport of atmospheric carbon: sources, global topology and budget. Water Air Soil Pollut 70:443–463

    Article  CAS  Google Scholar 

  • Monteith DT et al (2007) Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry. Nature 450(7169):537–540

    Article  CAS  Google Scholar 

  • Moodley L et al (2005) Oxygenation and organic-matter preservation in marine sediments: direct experimental evidence from ancient organic carbon-rich deposits. Geology 33(11):889–892

    Article  CAS  Google Scholar 

  • Mulholland PJ, Elwood JW (1982) The role of lake and reservoir sediments as sinks in the perturbed global carbon cycle. Tellus 34:490–499

    CAS  Google Scholar 

  • IPCC, Ciais P et al (2013) Carbon and other biogeochemical cycles. In: International climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

  • IPCC, Pachauri RK, Reisinger A (2007) Climate change 2007: synthesis report. In: Contribution of working groups I, II and III to the fourth assessment report of the intergovernmental panel on climate change. IPCC, Geneva

  • Pacheco F et al (2013) Eutrophication reverses whole-lake carbon budgets. Inland Waters 4:41–48

    Article  CAS  Google Scholar 

  • Parekh P (2004) A preliminary review of the impact of dam reservoirs on carbon cycling. Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139-4307 USA

  • Petts GE, Gurnell AM (2005) Dams and geomorphology: research progress and future directions. Geomorphology 71:27–47

    Article  Google Scholar 

  • Pondell CR (2014) Sediment and organic carbon burial in Englebright Lake, CA over the last century. Ph.D. Dissertation, The Faculty of the School of the Marine Science, The College of the William and Mary in Virginia

  • Power ME et al (1996) Dams and downstream aquatic biodiversity: potential food web consequences of hydrologic and geomorphic change. Environ Manag 20(6):887–895

    Article  CAS  Google Scholar 

  • Prairie YT et al (2017) Greenhouse gas emissions from freshwater reservoirs: What does the atmosphere see? Ecosystems 21(5):1058–1071

    Article  CAS  Google Scholar 

  • Raymond PA et al (2013) Global carbon dioxide emissions from inland waters. Nature 503:355–359

    Article  CAS  Google Scholar 

  • Regnier P et al (2013) Anthropogenic perturbation of the carbon fluxes from land to ocean. Nat Geosci 6:597–607

    Article  CAS  Google Scholar 

  • Rudd JWM et al (1993) Are hydroelectric reservoirs significant sources of greenhouse gases? Ambio 22:246–248

    Google Scholar 

  • Santos MAD et al (2004) Gross greenhouse gas fluxes from hydro-power reservoir compared to thermo-power plants. Energy Policy 34:481–488

    Article  Google Scholar 

  • Sawakuchi HO et al (2017) Carbon dioxide emissions along the lower Amazon River. Front Mar Sci 4:76

    Article  Google Scholar 

  • Schleiss AJ et al (2016) Reservoir sedimentation. J Hydraul Res 54(6):595–614

    Article  Google Scholar 

  • Schlesinger WH (1997) Biogeochemistry: an analysis of global change. Elsevier, New York

    Google Scholar 

  • Sobek S et al (2009) Organic carbon burial efficiency in lake sediments controlled by oxygen exposure time and sediment source. Limnol Oceanogr 54(6):2243–2254

    Article  Google Scholar 

  • Sobek S et al (2012) Extreme organic carbon burial fuels intense methane bubbling in a temperate reservoir. Geophys Res Lett 39:L01401

    Article  CAS  Google Scholar 

  • St. Louis VL et al (2000) Reservoir surfaces as sources of greenhouse gases to the atmosphere: a global estimate. Bioscience 50:766–775

    Article  Google Scholar 

  • Sumi T, Hirose T (2009) Accumulation of sediment in reservoirs. In: Takahasi Y (ed) Water storage, transport and distribution. UNESCO-IHE and EOLSS Publishers Co. Ltd, Paris, pp 224–252

    Google Scholar 

  • Syvitski JP, Milliman JD (2007) Geology, geography, and humans battle for dominance over the delivery of fluvial sediment to the coastal ocean. J Geol 115(1):1–19

    Article  Google Scholar 

  • Teodoru CR et al (2012) The net carbon footprint of a newly created boreal hydroelectric reservoir. Glob Biogeochem Cycles 26:GB2016

    Article  CAS  Google Scholar 

  • Tranvik LJ, Jansson M (2002) Climate change—terrestrial export of organic matter. Nature 415:861–862

    Article  CAS  Google Scholar 

  • Tranvik LJ et al (2009) Lakes and reservoirs as regulators of carbon cycling and climate. Limnol Oceanogr 54:2298–2314

    Article  CAS  Google Scholar 

  • Tremblay A et al (2005) Greenhouse gas emissions—fluxes and processes. Springer, Berlin

    Book  Google Scholar 

  • UNESCO-IHA International Hydropower Association, United Nations Educational, Scientific, and Cultural Organization (2012) GHG risk assessment tool (beta version) user Manual.IHA. www.ceeg.uqam.ca/Prairie/Publications_files/USER%20.MANUAL-Risk%20Assessment%20Tool%20-%20BetaVersion.pdf. 23 Aug 2016

  • Vörösmarty CJ et al (2003) Anthropogenic sediment retention: major global impact from registered river impoundments. Glob Planet Change 39:169–190

    Article  Google Scholar 

  • Zarfl C et al (2015) A global boom in hydropower dam construction. Aquat Sci 77:161–170

    Article  Google Scholar 

Download references

Acknowledgements

I am grateful to my Professor Wang Fu Shun (Dr. and Pro. of Geochemistry, School of environmental and chemical engineering, Shanghai University, Shanghai, 200444, China) for his valuable advice. I also would like to express my thanks to all authors in the references because this review would not have been possible unless the publication listed in this paper. The study was funded by the Ministry of Science and Technology of the People’s Republic of China (No. 2016YFA0601003) and the National Natural Science Foundation of China (Nos. 41573064, 41273128).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Wang.

Ethics declarations

Conflict of interest

The author has no declaration on conflict of interest.

Additional information

Editorial responsibility: M. Borghei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Phyoe, W.W., Wang, F. A review of carbon sink or source effect on artificial reservoirs. Int. J. Environ. Sci. Technol. 16, 2161–2174 (2019). https://doi.org/10.1007/s13762-019-02237-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-019-02237-2

Keywords

Navigation