Skip to main content
Log in

Daptomycin Physiology-Based Pharmacokinetic Modeling to Predict Drug Exposure and Pharmacodynamics in Skin and Bone Tissues

  • Original Research Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Background and Objective

Daptomycin has been recommended in the treatment of bone and joint infection. Previous work showed that the approved dosage of daptomycin may be insufficient to achieve optimal exposure in patients with bone and joint infection. However, those studies assumed that bone exposure was similar to steady-state daptomycin-free plasma concentrations. We sought to establish a physiologically based pharmacokinetic (PBPK) model of daptomycin to describe the dynamics of daptomycin disposition in bone and skin tissue.

Methods

A PBPK model of daptomycin was built using PK-Sim®. Daptomycin concentrations in plasma and bone were obtained from three previously published studies. Physicochemical drug characteristics, mass balance, anthropometrics, and experimental data were used to build and refine the PBPK model. Internal validation of the PBPK model was performed using the usual diagnostic plots. The final PBPK model was then used to run simulations with doses of 6, 8, 10, and 12 mg/kg/24 h. Pharmacokinetic profiles were simulated in 1000 subjects and the probabilities of target attainment for the area under the concentration–time curve over the bacterial minimum inhibitory concentration were computed in blood, skin, and bone compartments.

Results

The final model showed a good fit of all datasets with an absolute average fold error between 0.5 and 2 for all pharmacokinetic quantities in blood, skin and bone tissues. Results of dosing simulations showed that doses ≥10 mg/kg should be used in the case of bacteremia caused by Staphylococcus aureus with a minimum inhibitory concentration >0.5 mg/L or Enterococcus faecalis with a minimum inhibitory concentration >1 mg/L, while doses ≥12 mg/kg should be used in the case of bone and joint infection or complicated skin infection. When considering a lower minimum inhibitory concentration, doses of 6–8 mg/kg would likely achieve a sufficient success rate. However, in the case of infections caused by E. faecalis with a minimum inhibitory concentration >2 mg/L, a higher dosage and combination therapy would be necessary to maximize efficacy.

Conclusions

We developed the first daptomycin PBPK/pharmacodynamic model for bone and joint infection, which confirmed that a higher daptomycin dosage is needed to optimize exposure in bone tissue. However, such higher dosages raise safety concerns. In this setting, therapeutic drug monitoring and model-informed precision dosing appear necessary to ensure the right exposure on an individual basis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Straus SK, Hancock REW. Mode of action of the new antibiotic for Gram-positive pathogens daptomycin: comparison with cationic antimicrobial peptides and lipopeptides. Biochim Biophys Acta. 2006;1758:1215–23. https://doi.org/10.1016/j.bbamem.2006.02.009.

    Article  CAS  PubMed  Google Scholar 

  2. US FDA. FDA approved drug products: Cubicin (daptomycin) injection. https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/208385s005lbl.pdf. Accessed 7 Aug 2022.

  3. Jones TW, Jun AH, Michal JL, Olney WJ. High dose daptomycin and clinical applications. Ann Pharmacother. 2021;55:1363–78. https://doi.org/10.1177/1060028021991943.

    Article  CAS  PubMed  Google Scholar 

  4. Osmon DR, Berbari EF, Berendt AR, Lew D, Zimmerli W, Steckelberg JM, et al. Executive summary: diagnosis and management of prosthetic joint infection: clinical practice guidelines by the Infectious Diseases Society of America. Clin Infect Dis. 2013;56:1–10. https://doi.org/10.1093/cid/cis966.

    Article  PubMed  Google Scholar 

  5. Roux S, Valour F, Karsenty J, Gagnieu M-C, Perpoint T, Lustig S, et al. Daptomycin > 6 mg/kg/day as salvage therapy in patients with complex bone and joint infection: cohort study in a regional reference center. BMC Infect Dis. 2016;16:83. https://doi.org/10.1186/s12879-016-1420-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Telles JP, Cieslinski J, Tuon FF. Daptomycin to bone and joint infections and prosthesis joint infections: a systematic review. Braz J Infect Dis. 2019;23:191–6. https://doi.org/10.1016/j.bjid.2019.05.006.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Lora-Tamayo J, Parra-Ruiz J, Rodríguez-Pardo D, Barberán J, Ribera A, Tornero E, et al. High doses of daptomycin (10 mg/kg/d) plus rifampin for the treatment of staphylococcal prosthetic joint infection managed with implant retention: a comparative study. Diagn Microbiol Infect Dis. 2014;80:66–71. https://doi.org/10.1016/j.diagmicrobio.2014.05.022.

    Article  CAS  PubMed  Google Scholar 

  8. Traunmüller F, Schintler MV, Metzler J, Spendel S, Mauric O, Popovic M, et al. Soft tissue and bone penetration abilities of daptomycin in diabetic patients with bacterial foot infections. J Antimicrob Chemother. 2010;65:1252–7. https://doi.org/10.1093/jac/dkq109.

    Article  CAS  PubMed  Google Scholar 

  9. Montange D, Berthier F, Leclerc G, Serre A, Jeunet L, Berard M, et al. Penetration of daptomycin into bone and synovial fluid in joint replacement. Antimicrob Agents Chemother. 2014;58:3991–6. https://doi.org/10.1128/AAC.02344-14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Grillon A, Argemi X, Gaudias J, Ronde-Ousteau C, Boeri C, Jenny J-Y, et al. Bone penetration of daptomycin in diabetic patients with bacterial foot infections. Int J Infect Dis. 2019;85:127–31. https://doi.org/10.1016/j.ijid.2019.05.011.

    Article  CAS  PubMed  Google Scholar 

  11. Morrisette T, Alosaimy S, Abdul-Mutakabbir JC, Kebriaei R, Rybak MJ. The evolving reduction of vancomycin and daptomycin susceptibility in MRSA: salvaging the gold standards with combination therapy. Antibiotics. 2020;9:762. https://doi.org/10.3390/antibiotics9110762.

    Article  CAS  PubMed Central  Google Scholar 

  12. Kelley PG, Gao W, Ward PB, Howden BP. Daptomycin Non-susceptibility in vancomycin-intermediate Staphylococcus Aureus (VISA) and heterogeneous-VISA (HVISA): implications for therapy after vancomycin treatment failure. J Antimicrob Chemother. 2011;66:1057–60. https://doi.org/10.1093/jac/dkr066.

    Article  CAS  PubMed  Google Scholar 

  13. Siala W, Mingeot-Leclercq M-P, Tulkens PM, Hallin M, Denis O, Van Bambeke F. Comparison of the antibiotic activities of daptomycin, vancomycin, and the investigational fluoroquinolone delafloxacin against biofilms from Staphylococcus aureus clinical isolates. Antimicrob Agents Chemother. 2014;58:6385–97. https://doi.org/10.1128/AAC.03482-14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Stewart PS, Davison WM, Steenbergen JN. Daptomycin rapidly penetrates a Staphylococcus epidermidis biofilm. Antimicrob Agents Chemother. 2009;53:3505–7. https://doi.org/10.1128/AAC.01728-08.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dvorchik BH, Brazier D, DeBruin MF, Arbeit RD. Daptomycin pharmacokinetics and safety following administration of escalating doses once daily to healthy subjects. Antimicrob Agents Chemother. 2003;47:1318–23. https://doi.org/10.1128/AAC.47.4.1318-1323.2003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Benvenuto M, Benziger DP, Yankelev S, Vigliani G. Pharmacokinetics and tolerability of daptomycin at doses up to 12 milligrams per kilogram of body weight once daily in healthy volunteers. Antimicrob Agents Chemother. 2006;50:3245–9. https://doi.org/10.1128/AAC.00247-06.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Figueroa DA, Mangini E, Amodio-Groton M, Vardianos B, Melchert A, Fana C, et al. Safety of high-dose intravenous daptomycin treatment: three-year cumulative experience in a clinical program. Clin Infect Dis. 2009;49:177–80. https://doi.org/10.1086/600039.

    Article  CAS  PubMed  Google Scholar 

  18. Byren I, Rege S, Campanaro E, Yankelev S, Anastasiou D, Kuropatkin G, et al. Randomized controlled trial of the safety and efficacy of daptomycin versus standard-of-care therapy for management of patients with osteomyelitis associated with prosthetic devices undergoing two-stage revision arthroplasty. Antimicrob Agents Chemother. 2012;56:5626–32. https://doi.org/10.1128/AAC.00038-12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Safdar N, Andes D, Craig WA. In vivo pharmacodynamic activity of daptomycin. Antimicrob Agents Chemother. 2004;48:63–8. https://doi.org/10.1128/AAC.48.1.63-68.2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Falcone M, Russo A, Cassetta MI, Lappa A, Tritapepe L, d’Ettorre G, et al. Variability of pharmacokinetic parameters in patients receiving different dosages of daptomycin: is therapeutic drug monitoring necessary? J Infect Chemother. 2013;19:732–9. https://doi.org/10.1007/s10156-013-0559-z.

    Article  CAS  PubMed  Google Scholar 

  21. Bhavnani SM, Rubino CM, Ambrose PG, Drusano GL. Daptomycin exposure and the probability of elevations in the creatine phosphokinase level: data from a randomized trial of patients with bacteremia and endocarditis. Clin Infect Dis. 2010;50:1568–74. https://doi.org/10.1086/652767.

    Article  CAS  PubMed  Google Scholar 

  22. Samura M, Takada K, Yamamoto R, Ito H, Nagumo F, Uchida M, et al. Population pharmacokinetic analysis and dosing optimization based on unbound daptomycin concentration and cystatin C in nonobese elderly patients with hypoalbuminemia and chronic kidney disease. Pharm Res. 2021;38:1041–55. https://doi.org/10.1007/s11095-021-03058-0.

    Article  CAS  PubMed  Google Scholar 

  23. Goutelle S, Roux S, Gagnieu M-C, Valour F, Lustig S, Ader F, et al. Pharmacokinetic variability of daptomycin during prolonged therapy for bone and joint infections. Antimicrob Agents Chemother. 2016;60:3148–51. https://doi.org/10.1128/AAC.02597-15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bricca R, Goutelle S, Roux S, Gagnieu M-C, Becker A, Conrad A, et al. Genetic polymorphisms of ABCB1 (P-glycoprotein) as a covariate influencing daptomycin pharmacokinetics: a population analysis in patients with bone and joint infection. J Antimicrob Chemother. 2019;74:1012–20. https://doi.org/10.1093/jac/dky541.

    Article  CAS  PubMed  Google Scholar 

  25. Garreau R, Bricca R, Gagnieu M-C, Roux S, Conrad A, Bourguignon L, et al. Lyon Bone and Joint Infection Study Group. Population pharmacokinetics of daptomycin in patients with bone and joint infection: minimal effect of rifampicin co-administration and confirmation of a sex difference. J Antimicrob Chemother. 2021;76:1250–7. https://doi.org/10.1093/jac/dkab006.

    Article  CAS  PubMed  Google Scholar 

  26. Anonymous reporting of physiologically based pharmacokinetic (PBPK) modelling and simulation. https://www.ema.europa.eu/en/reporting-physiologically-based-pharmacokinetic-pbpk-modelling-simulation. Accessed 12 Jan 2022.

  27. Woodworth JR, Nyhart EH, Brier GL, Wolny JD, Black HR. Single-dose pharmacokinetics and antibacterial activity of daptomycin, a new lipopeptide antibiotic, in healthy volunteers. Antimicrob Agents Chemother. 1992;36:318–25. https://doi.org/10.1128/AAC.36.2.318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Oleson FB, Berman CL, Li AP. An evaluation of the P450 inhibition and induction potential of daptomycin in primary human hepatocytes. Chem Biol Interact. 2004;150:137–47. https://doi.org/10.1016/j.cbi.2004.08.004.

    Article  CAS  PubMed  Google Scholar 

  29. Benet LZ, Broccatelli F, Oprea TI. BDDCS applied to over 900 drugs. AAPS J. 2011;13:519–47. https://doi.org/10.1208/s12248-011-9290-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kreft B, de Wit C, Krech R, Marre R, Schulz E, Sack K. Experimental studies on nephrotoxicity and pharmacokinetics of LY 146032 (daptomycin) in rats. J Antimicrob Chemother. 1990;25:635–43. https://doi.org/10.1093/jac/25.4.635.

    Article  CAS  PubMed  Google Scholar 

  31. Lemaire S, Van Bambeke F, Mingeot-Leclercq MP, Tulkens PM. Modulation of the cellular accumulation and intracellular activity of daptomycin towards phagocytized Staphylococcus aureus by the P-glycoprotein (MDR1) efflux transporter in human THP-1 macrophages and Madin-Darby canine kidney cells. Antimicrob Agents Chemother. 2007;51:2748–57. https://doi.org/10.1128/AAC.00090-07.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Benefield RJ, Slechta ES, Gast CM, Spivak ES, Hanson KE, Alexander DP. Comparison of the drug-drug interaction potential of daptomycin in combination with rifampin in healthy adult volunteers. Antimicrob Agents Chemother. 2018;62:e01525-e1618. https://doi.org/10.1128/AAC.01525-18.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Chen Y-F, Sun T-L, Sun Y, Huang HW. Interaction of daptomycin with lipid bilayers: a lipid extracting effect. Biochemistry. 2014;53:5384–92. https://doi.org/10.1021/bi500779g.

    Article  CAS  PubMed  Google Scholar 

  34. Avery LM, Kuti JL, Weisser M, Egli A, Rybak MJ, Zasowski EJ, et al. Pharmacodynamic analysis of daptomycin-treated enterococcal bacteremia: it is time to change the breakpoint. Clin Infect Dis. 2019;68:1650–7. https://doi.org/10.1093/cid/ciy749.

    Article  CAS  PubMed  Google Scholar 

  35. Kidd JM, Abdelraouf K, Asempa TE, Humphries RM, Nicolau DP. Pharmacodynamics of daptomycin against Enterococcus faecium and Enterococcus faecalis in the murine thigh infection model. Antimicrob Agents Chemother. 2018;62:e00506-e518. https://doi.org/10.1128/AAC.00506-18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. EUCAST. Clinical breakpoints and dosing of antibiotics. http://www.eucast.org/clinical_breakpoints/. Accessed 23 Sep 2019.

  37. Satlin MJ, Nicolau DP, Humphries RM, Kuti JL, Campeau SA, Lewis JS II, et al. Clinical and Laboratory Standards Institute Subcommittee on Antimicrobial Susceptibility Testing and Ad Hoc Working Group on Revision of Daptomycin Enterococcal Breakpoints. Development of daptomycin susceptibility breakpoints for Enterococcus faecium and revision of the breakpoints for other enterococcal species by the Clinical and Laboratory Standards Institute. Clin Infect Dis. 2020;70:1240–6. https://doi.org/10.1093/cid/ciz845.

    Article  CAS  PubMed  Google Scholar 

  38. Dvorchik B. Moderate liver impairment has no influence on daptomycin pharmacokinetics. J Clin Pharmacol. 2004;44:715–22. https://doi.org/10.1177/0091270004266619.

    Article  CAS  PubMed  Google Scholar 

  39. Yamamoto Y, Yamamoto Y, Saita T, Shin M. Localization and accumulation studies of daptomycin in rats kidney using immunohistochemistry. Yakugaku Zasshi. 2020;140:569–76. https://doi.org/10.1248/yakushi.19-00233.

    Article  CAS  PubMed  Google Scholar 

  40. D’Costa VM, Mukhtar TA, Patel T, Koteva K, Waglechner N, Hughes DW, et al. Inactivation of the lipopeptide antibiotic daptomycin by hydrolytic mechanisms. Antimicrob Agents Chemotherapy. 2012;56:757–64.

    Article  Google Scholar 

  41. Ogami C, Tsuji Y, Kasai H, Hiraki Y, Yamamoto Y, Matsunaga K, et al. Evaluation of pharmacokinetics and the stability of daptomycin in serum at various temperatures. Int J Infect Dis. 2017;57:38–43. https://doi.org/10.1016/j.ijid.2017.01.017.

    Article  CAS  PubMed  Google Scholar 

  42. Edginton AN, Schmitt W, Voith B, Willmann S. A mechanistic approach for the scaling of clearance in children. Clin Pharmacokinet. 2006;45:683–704. https://doi.org/10.2165/00003088-200645070-00004.

    Article  CAS  PubMed  Google Scholar 

  43. Urakami T, Hamada Y, Oka Y, Okinaka T, Yamakuchi H, Magarifuchi H, et al. Clinical pharmacokinetic and pharmacodynamic analysis of daptomycin and the necessity of high-dose regimen in Japanese adult patients. J Infect Chemother. 2019;25:437–43. https://doi.org/10.1016/j.jiac.2019.01.011.

    Article  CAS  PubMed  Google Scholar 

  44. Tascini C, Di Paolo A, Polillo M, Ferrari M, Lambelet P, Danesi R, et al. Case report of a successful treatment of methicillin-resistant Staphylococcus aureus (MRSA) bacteremia and MRSA/vancomycin-resistant Enterococcus faecium cholecystitis by daptomycin. Antimicrob Agents Chemother. 2011;55:2458–9. https://doi.org/10.1128/AAC.01774-10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. DrugBank Online. Daptomycin: uses, interactions, mechanism of action. https://go.drugbank.com/drugs/DB00080. Accessed 13 Sep 2021.

  46. PubChem. Daptomycin: C72H101N17O26. https://pubchem.ncbi.nlm.nih.gov/compound/Daptomycin#section=Computed-Properties. Accessed 13 Sep 2021.

Download references

Acknowledgements

We gratefully acknowledge Dr. Friederike Traunmüller for sharing daptomycin PK data. Lyon Bone and Joint Study Group (list of collaborators). Coordinator: Tristan Ferry; infectious diseases specialists: Tristan Ferry, Florent Valour, Thomas Perpoint, Patrick Miailhes, Florence Ader, Sandrine Roux, Agathe Becker, Claire Triffault-Fillit, Anne Conrad, Cécile Pouderoux, Nicolas Benech, Pierre Chauvelot, Marielle Perry, Fatiha Daoud, Johanna Lippman, Evelyne Braun, Christian Chidiac; surgeons: Elvire Servien, Cécile Batailler, Stanislas Gunst, Axel Schmidt, Matthieu Malatray, Elliot Sappey-Marinier, Michel-Henry Fessy, Anthony Viste, Jean-Luc Besse, Philippe Chaudier, Lucie Louboutin, Quentin Ode, Adrien Van Haecke, Marcelle Mercier, Vincent Belgaid, Arnaud Walch, Sébastien Martres, Franck Trouillet, Cédric Barrey, Ali Mojallal, Sophie Brosset, Camille Hanriat, Hélène Person, Nicolas Sigaux, Philippe Céruse, Carine Fuchsmann; Anesthesiologists – Frédéric Aubrun, Mikhail Dziadzko, Caroline Macabéo; Microbiologists – Frederic Laurent, Laetitia Beraud, Tiphaine Roussel-Gaillard, Céline Dupieux, Camille Kolenda, Jérôme Josse; Pathology—Marie Brevet, Alexis Trecourt; Imaging—Fabien Craighero, Loic Boussel, Jean-Baptiste Pialat, Isabelle Morelec; PK/PD specialists—Michel Tod, Marie-Claude Gagnieu, Sylvain Goutelle; Clinical research assistant and database manager– Eugénie Mabrut

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Romain Garreau.

Ethics declarations

Funding

This study was carried out as part of our routine work, which is funded by Hospices Civils de Lyon and the University of Lyon.

Conflicts of interest/competing interests

Romain Garreau, Damien Montange, Antoine Grillon, François Jehl, Tristan Ferry, Laurent Bourguignon, and Sylvain Goutelle have no conflicts of interest that are directly relevant to the content of this article.

Ethics approval

Not applicable.

Consent to participate

All patient gave they consent to participate in the original study.

Consent for publication

All patient gave they consent for publication in the original study.

Availability of data and material

Data analyzed in this study were previously published in different studies. They were shared by Friederick Traunmüller, Damien Montange, François Jehl, and Antoine Grillon. Those authors can be contacted for data availability.

Code availability

Not applicable.

Author contributions

All authors contributed to the study conception and design. Data collection was performed by RG, DM, and AG. Data preparation and analysis were performed by RG. The first draft of the manuscript was written by RG. and all authors contributed to manuscript revisions with significant intellectual input. All authors read and approved the final manuscript.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garreau, R., Montange, D., Grillon, A. et al. Daptomycin Physiology-Based Pharmacokinetic Modeling to Predict Drug Exposure and Pharmacodynamics in Skin and Bone Tissues. Clin Pharmacokinet 61, 1443–1456 (2022). https://doi.org/10.1007/s40262-022-01168-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40262-022-01168-5

Navigation