Skip to main content
Log in

Nanostructured ZnO Films with Enhanced Sensitivity to CO Synthesized by AACVD

  • INORGANIC MATERIALS AND NANOMATERIALS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The effect of the destruction temperature during aerosol-assisted chemical vapor deposition of highly dispersed ZnO on its microstructural characteristics has been studied with the aim of developing an efficient method for fabrication of selective gas-sensing films based on semiconductor metal oxides. It has been demonstrated that increasing the operating temperature from 350 to 450°С leads to a change in the shape of nanoparticles from a regular hexagonal prism to a sphere. For the films obtained in a stream of nitrogen and air as carrier gases at a destruction temperature of 400°С, the chemoresistive gas-sensing properties have been studied. The highest sensitivity has been observed at a detection temperature of 250°С toward carbon monoxide (response Rair/RCO is 1.3–6.1 when detecting 4–100 ppm CO). The films are characterized by good selectivity: at 250°С, the responses to NH3, NO2, benzene, and H2 were no higher than 1.7, while the responses to CO were 3.7 and 6.1 for coatings fabricated in a flow of air and nitrogen, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. A. B. Djurišić, X. Chen, Y. H. Leung, et al., J. Mater. Chem. 22, 6526 (2012). https://doi.org/10.1039/c2jm15548f

    Article  CAS  Google Scholar 

  2. R. Ahmad, S. M. Majhi, X. Zhang, et al., Adv. Colloid Interface Sci. 270, 1 (2019). https://doi.org/10.1016/j.cis.2019.05.006

    Article  CAS  PubMed  Google Scholar 

  3. A. B. Djuriić, A. M. C. Ng, and X. Y. Chen, Prog. Quantum Electron. 34, 191 (2010). https://doi.org/10.1016/j.pquantelec.2010.04.001

    Article  CAS  Google Scholar 

  4. J. Lv, C. Li, and Z. Chai, J. Lumin. 208, 225 (2019). https://doi.org/10.1016/j.jlumin.2018.12.050

    Article  CAS  Google Scholar 

  5. S. Xu and Z. L. Wang, Nano Res. 4, 1013 (2011). https://doi.org/10.1007/s12274-011-0160-7

    Article  CAS  Google Scholar 

  6. S. K. Arya, S. Saha, J. E. Ramirez-Vick, et al., Anal. Chim. Acta 737, 1 (2012). https://doi.org/10.1016/j.aca.2012.05.048

    Article  CAS  PubMed  Google Scholar 

  7. Y. Deng, Semiconducting Metal Oxides for Gas Sensing (Elsevier, 2019). https://doi.org/10.1007/978-981-13-5853-1

  8. S. Y. Jeong, J. S. Kim, and J. H. Lee, Adv. Mater. 32, 2002075 (2020). https://doi.org/10.1002/adma.202002075

    Article  CAS  Google Scholar 

  9. Z. L. Wang, J. Phys.: Condens. Matter 16, 25 (2004). https://doi.org/10.1088/0953-8984/16/25/R01

    Article  CAS  Google Scholar 

  10. L. Wang, X. Yang, W. Yang, et al., Appl. Surf. Sci. 398, 97 (2017). https://doi.org/10.1016/j.apsusc.2016.12.035

    Article  CAS  Google Scholar 

  11. K. Bramhaiah, V. N. Singh, and N. S. John, Phys. Chem. Chem. Phys. 18, 1478 (2016). https://doi.org/10.1039/c5cp05081b

    Article  CAS  PubMed  Google Scholar 

  12. N. Tamaekong, C. Liewhiran, A. Wisitsoraat, et al., Sens. Actuators, B 152, 155 (2011). https://doi.org/10.1016/j.snb.2010.11.058

    Article  CAS  Google Scholar 

  13. N. Tamaekong, C. Liewhiran, A. Wisitsoraat, et al., Sensors 9, 6652 (2009). https://doi.org/10.3390/s90906652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. X. Hou and K. L. Choy, Chem. Vap. Deposition 12, 583 (2006). https://doi.org/10.1002/cvde.200600033

    Article  CAS  Google Scholar 

  15. R. G. Palgrave and I. P. Parkin, J. Am. Chem. Soc. 128, 1587 (2006). https://doi.org/10.1021/ja055563v

    Article  CAS  PubMed  Google Scholar 

  16. W. Gao and Z. Li, Ceram. Int. 30, 1155 (2004). https://doi.org/10.1016/j.ceramint.2003.12.197

    Article  CAS  Google Scholar 

  17. V. Craciun, J. Elders, J. G. E. Gardeniers, et al., Appl. Phys. Lett. 65 (23), 2963 (1994). https://doi.org/10.1063/1.112478

    Article  CAS  Google Scholar 

  18. M. Opel, S. Geprägs, M. Althammer, et al., J. Phys. D: Appl. Phys. 47, 034002 (2014). https://doi.org/10.1088/0022-3727/47/3/034002

    Article  CAS  Google Scholar 

  19. S. O’Brien, M. G. Nolan, M. Çopuroglu, et al., Thin Solid Films 518, 4515 (2010). https://doi.org/10.1016/j.tsf.2009.12.020

    Article  CAS  Google Scholar 

  20. X. J. Qin, L. Zhao, G. J. Shao, et al., Thin Solid Films 542, 144 (2013). https://doi.org/10.1016/j.tsf.2013.07.002

    Article  CAS  Google Scholar 

  21. M. Claros, M. Setka, Y. P. Jimenez, et al., Nanomaterials 10, 471 (2020). https://doi.org/10.3390/nano10030471

    Article  CAS  PubMed Central  Google Scholar 

  22. D. S. Bhachu, G. Sankar, and I. P. Parkin, Chem. Mater. 24, 4704 (2012). https://doi.org/10.1021/cm302913b

    Article  CAS  Google Scholar 

  23. S. Vallejos, N. Pizúrová, J. Čechal, et al., J. Visualized Exp. 127, e56127 (2017).

    Google Scholar 

  24. A. Sáenz-Trevizo, P. Amezaga-Madrid, P. Pizá-Ruiz, et al., Mater. Sci. Semicond. Process. 45, 57 (2016). https://doi.org/10.1016/j.mssp.2016.01.018

    Article  CAS  Google Scholar 

  25. J. Ding, S. Chen, N. Han, et al., Ceram. Int. 46, 15152 (2020). https://doi.org/10.1016/j.ceramint.2020.03.051

    Article  CAS  Google Scholar 

  26. R. Elleuch, R. Salhi, N. Maalej, et al., J. Mater. Sci. Eng. B 178, 1124 (2013). https://doi.org/10.1016/j.mseb.2013.07.005

    Article  CAS  Google Scholar 

  27. S. T. Hussain, S. A. Bakar, B. Saima, et al., Appl. Surface Sci. 258, 9610 (2012). https://doi.org/10.1016/j.apsusc.2012.05.157

    Article  CAS  Google Scholar 

  28. M. Ling and C. Blackman, Phys. Status Solidi C 12, 869 (2015). https://doi.org/10.1002/pssc.201510047

    Article  CAS  Google Scholar 

  29. T. Stoycheva, S. Vallejos, J. Calderer, et al., Procedia Eng. 5, 131 (2010). https://doi.org/10.1016/j.proeng.2010.09.065

    Article  CAS  Google Scholar 

  30. W. Shen, Y. Zhao, and C. Zhang, Thin Solid Films 483, 382 (2005). https://doi.org/10.1016/j.tsf.2005.01.015

    Article  CAS  Google Scholar 

  31. S. Vallejos, N. Pizúrová, I. Gràcia, et al., ACS Appl. Mater. Interfaces 8, 33335 (2016). https://doi.org/10.1021/acsami.6b12992

    Article  CAS  PubMed  Google Scholar 

  32. A. S. G. Khalil, S. Hartner, M. Ali, et al., J. Nanosci. Nanotechnol. 11, 10839 (2011). https://doi.org/10.1166/jnn.2011.4043

    Article  CAS  PubMed  Google Scholar 

  33. C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, Nat. Methods 9, 671 (2012). https://doi.org/10.1038/nmeth.2089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. A. S. Mokrushin, T. L. Simonenko, N. P. Simonenko, et al., J. Alloys Compd. 868, 159090 (2021). https://doi.org/10.1016/j.jallcom.2021.159090

    Article  CAS  Google Scholar 

  35. A. S. Mokrushin, N. A. Fisenko, P. Y. Gorobtsov, et al., Talanta 221, 121455 (2021). https://doi.org/10.1016/j.talanta.2020.121455

    Article  CAS  PubMed  Google Scholar 

  36. I. A. Nagornov, A. S. Mokrushin, E. P. Simonenko, et al., Ceram. Int. 46, 7756 (2020). https://doi.org/10.1016/j.ceramint.2019.11.279

    Article  CAS  Google Scholar 

  37. T. L. Simonenko, N. P. Simonenko, P. Y. Gorobtsov, et al., J. Alloys Compd. 832, 154957 (2020). https://doi.org/10.1016/j.jallcom.2020.154957

    Article  CAS  Google Scholar 

  38. H. J. Kim, J. H. Lee, K. Hyo-Joong, et al., Sens. Actuators, B 192, 607 (2014). https://doi.org/10.1016/j.snb.2013.11.005

    Article  CAS  Google Scholar 

Download references

Funding

The study was supported by the Russian Science Foundation (project no. 20-73-00309).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Mokrushin.

Ethics declarations

The authors declare no conflicts of interest.

Additional information

Translated by G. Kirakosyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mokrushin, A.S., Gorban’, Y.M., Simonenko, N.P. et al. Nanostructured ZnO Films with Enhanced Sensitivity to CO Synthesized by AACVD. Russ. J. Inorg. Chem. 66, 1447–1454 (2021). https://doi.org/10.1134/S0036023621090072

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023621090072

Keywords:

Navigation