Skip to main content
Log in

Clarithromycin Clinical Pharmacokinetics

  • Drug Disposition
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Summary

Clarithromycin is a semisynthetic macrolide antibiotic, structurally related to erythromycin. It has a more favourable pharmacokinetic profile than erythromycin, thus allowing twice-daily administration and possibly increasing compliance among outpatients.

Clarithromycin is well absorbed from the gastrointestinal tract and its systemic bioavailability (about 55%) is reduced because of first-pass metabolism. It undergoes rapid biodegradation to produce the microbiologically active 14-hydroxy-(R)-metabolite. The maximum serum concentrations of clarithromycin and its 14-hydroxy metabolite, following single oral doses, are dose proportional and appear within 3 hours.

With multiple doses, steady-state concentrations are attained after 5 doses and the maximal serum concentrations of clarithromycin and of the 14-hydroxy derivative appear within 2 hours after the last dose. Clarithromycin is well distributed throughout the body and achieves higher concentrations in tissues than in the blood. Also, the 14-hydroxy metabolite exhibits high tissue concentrations, with values about one-third of the parent compound concentrations. The presence of food appears to have no clinically significant effect on clarithromycin pharmacokinetics.

The main metabolic pathways are oxidative N-demethylation and hydroxylation, which are saturable and result in nonlinear pharmacokinetics. The primary metabolite (14-hydroxy derivative) is mainly excreted in the urine with the parent compound.

A reduction in urinary clearance in the elderly and in patients with renal impairment is associated with an increase in area under the plasma concentration-time curve, peak plasma concentrations and elimination half-life. Mild hepatic impairment does not significantly modify clarithromycin pharmacokinetics.

In conclusion, clarithromycin, because of its antibacterial activity and pharmacokinetic properties, appears to be a useful alternative to other macrolides in the treatment of community acquired infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adachi T, Morimoto S, Kondoh H, Nagate T, Watanabe Y, et al. 14-Hydroxy-6-O-methylerythromycins A: active metabolites of 6-O- methylerythromycin A in human. Journal of Antibiotics 41: 966–975, 1988

    Article  PubMed  CAS  Google Scholar 

  • Akita H, Sato Y, Iwata S, Sunakawa K. Laboratory and clinical studies on clarithromycin in pediatrics. Japanese Journal of Antibiotics 42: 263–280, 1989

    Google Scholar 

  • Anderson R, Joone G, Van Rensburg CEJ. An in vitro evaluation of the cellular uptake and intraphagocytic bioactivity of clarithromycin (A-56268, Te-031), a new macrolide antimicrobial agent. Journal of Antimicrobial Chemotherapy 22: 923–933, 1988

    Article  PubMed  CAS  Google Scholar 

  • Anderson R, Van Rensburg CEJ, Joone G, Lukey PT. An in vitro comparison of the intraphagocytic bioactivity of erythromycin and RU-28965. Journal of Antimicrobial Chemotherapy 20(Suppl. B): 57–68, 1987

    PubMed  Google Scholar 

  • Babany G, Larrey D, Pessayre D. Macrolide antibiotics as inducers and inhibitors of cytochrome P-450 in experimental animals and man. In Gibson (Ed.) Progress in drug metabolism, pp. 61–98, Taylor and Francis, London, 1988

    Google Scholar 

  • Bachand RTB, Wight L, Cook J, Vandenberg M, Lumpkin MM, et al. Clarithromycin in the treatment of bronchitis. IVth World Conference on Clinical Pharmacology and Therapeutics, Mannheim-Heidelberg, Germany, July 23-28, 1989. Abstracts Book, European Journal of Clinical Pharmacology and Therapeutics 36(Suppl.): 16.05, 1989

    Google Scholar 

  • Back DJ, Grimmer SFM, Orme ML’E, Proudlove C, Mann RD, et al. Evaluation of committee on safety of medicines yellow card reports on oral contraceptive-drug interactions with anticonvulsants and antibiotics. British Journal of Clinical Pharmacology 25: 527–532, 1988

    Article  PubMed  CAS  Google Scholar 

  • Barry AL, Fernandes PB, Jorgensen JH, Thornsberry C, Hardy DJ, et al. Variability of clarithromycin and erythromycin susceptibility tests with Haemophilus influenzae in four different broth media and correlation with the standard disk diffusion test. Journal of Clinical Microbiology 26: 2415–2420, 1988

    PubMed  CAS  Google Scholar 

  • Barry AL, Thornsberry C, Jones RN. In vitro activity of a new macrolide, A-56268, compared with that of roxithromycin, erythromycin, and clindamycin. Antimicrobial Agents and Chemotherapy 31: 343–345, 1987

    Article  PubMed  CAS  Google Scholar 

  • Benson CA, Segreti J, Beaudette FE, Hines DW, Goodman LJ, et al. In vitro activity of A-56268 (TE-031) a new macrolide compared with that of erythromycin and clindamycin against selected Gram-positive and Gram-negative organisms. Antimicrobial Agents and Chemotherapy 31: 328–330, 1987a

    Article  PubMed  CAS  Google Scholar 

  • Benson CA, Segreti J, Kessler H, Hines D, Goodman L, et al. Comparative in vitro activity of A-56268 (TE-031), against Gram-positive and Gram-negative bacteria and Chlamydia trachomatis. European Journal of Clinical Microbiology and Infectious Diseases 6: 173–178, 1987b

    Article  CAS  Google Scholar 

  • Bowie WR, Shaw CE, Chan DGW, Black WA. In vitro activity of Ro 15-8074, Ro 19-5247, A-56268, and roxithromycin (RU 28965) against Neisseria gonorrhoeae and Chlamydia trachomatis. Antimicrobial Agents and Chemotherapy 31: 470–472, 1987

    Article  PubMed  CAS  Google Scholar 

  • Carlier MB, Zenebergh A, Tulkens PM. Cellular uptake and subcellular distribution of roxithromycin and erythromycin in phagocytic cells. Journal of Antimicrobial Chemotherapy 20(Suppl. B): 47–58, 1987

    PubMed  CAS  Google Scholar 

  • Chien SM, Pichotta P, Siepman N, Chan CK. Treatment of community acquired pneumonia: a multicenter double blind, randomized study comparing clarithromycin with erythromycin. Chest 103: 697–701, 1993

    Article  PubMed  CAS  Google Scholar 

  • Chin N-X, Neu NM, Labthavikul P, Saha G, Neu HC. Activity of A-56268 compared with that of erythromycin and other oral agents against aerobic and anaerobic bacteria. Antimicrobial Agents of Chemotherapy 31: 463–466, 1987

    Article  CAS  Google Scholar 

  • Chu SY, Deaton R, Cavanaugh J. Absolute bioavailability of clarithromycin after oral administration in humans. Antimicrobial Agents and Chemotherapy 36: 1147–1150, 1992c

    Article  PubMed  CAS  Google Scholar 

  • Chu SY, Park Y, Locke C, Wilson DS, Cavanaugh C. Drug-food interaction potential of clarithromycin, a new macrolide antimicrobial. Journal of Clinical Pharmacology 32: 32–36, 1992a

    PubMed  CAS  Google Scholar 

  • Chu SY, Sennello LT, Bunnel ST, Varga LL, Wilson DS, et al. Pharmacokinetics of clarithromycin, a new macrolide, after single ascending doses. Antimicrobial Agents and Chemotherapy 36: 2447–2453, 1992d

    Article  PubMed  CAS  Google Scholar 

  • Chu SY, Sennello LT, Sonders RC. Simultaneous determination of clarithromycin and 14(R)-hydroxy-clarithromycin in plasma and urine using high performance liquid chromatography with electrochemical detection. Journal of Chromatography 571: 199–208, 1991

    Article  PubMed  CAS  Google Scholar 

  • Chu SY, Wilson DS, Eason C, Deaton RL. Single and multi-dose pharmacokinetics of clarithromycin. Abstract No. 759. 30th Annual Interscience Conference on Antimicrobial Agents and Chemotherapy, Atlanta, Georgia, October, 1990

  • Chu SY, Wilson DS, Guay DR, Craft C. Clarithromycin pharmacokinetics in healthy young and elderly volunteers. Journal of Clinical Pharmacology 32: 1045–1049, 1992b

    PubMed  CAS  Google Scholar 

  • Danan G, Descatoire V, Pessayre D. Selfinduction by erythromycin of its own transformation into a metabolite forming an inactive complex with reduced cytochrome P-450. Journal of Pharmacology and Experimental Therapeutics 218: 509–514, 1981

    PubMed  CAS  Google Scholar 

  • Dautzenberg B, Truffot C, Legris S, Meyohas M-C, Berlie HC, et al. Activity of clarithromycin against Mycobacterium avium infection in patients with the acquired immune deficiency syndrome. American Review of Respiratory Disease 144: 564–569, 1991

    Article  PubMed  CAS  Google Scholar 

  • Davey PG. The pharmacokinetics of clarithromycin and its 14-0H metabolite. Journal of Hospital Infection 19(Suppl. A): 29–37, 1991

    Article  PubMed  Google Scholar 

  • Dealer SF. In vitro activity of LY 146032 daptomycin and other agents against J.K. diphtheroids. Journal of Antimicrobial Chemotherapy 21: 807–812, 1988

    Article  Google Scholar 

  • Dette GA, Knothe H, Koulen G. Comparative in vitro activity, serum binding and binding activity interactions of the macrolides A-56 268, RU-28965, erythromycin and josamycin. Drugs Under Experimental and Clinical Research 13: 567–576, 1987

    PubMed  CAS  Google Scholar 

  • Eliopoulous GM, Reiszner E, Ferraro MJ, Moellering RC. Comparative in vitro activity of A-56268 (TE-031), a new macrolide antibiotic. Journal of Antimicrobial Chemotherapy 21: 671–675, 1988

    Google Scholar 

  • Etoh T, Matsuyama T, Iwata M, Watanabe R, Ishibashi Y. Preclinical and clinical studies on TE-031 (A-56268) in the field of dermatology. Chemotherapy 36(Suppl. 3): 943–949, 1988

    Google Scholar 

  • Fernandes PB. The macrolide revival: thirty-five years after erythromycin. Antimicrobic Newsletters 4: 25–34, 1987

    Article  CAS  Google Scholar 

  • Fernandes PB, Bailer R, Swanson R, Hanson CW, McDonald E, et al. In vitro and in vivo evaluation of A-56268 (TE-031), a new macrolide. Antimicrobial Agents and Chemotherapy 30: 865–873, 1986

    Article  PubMed  CAS  Google Scholar 

  • Fernandes PB, Baker WR, Freiberg LA, Hardy DJ, McDonald EJ. New macrolides active against Streptoccus pyogenes with inducible or constitutive type of macrolide-lincosamide-streptogramin B resistance. Antimicrobial Agents and Chemotherapy 33: 78–81, 1989a

    Article  PubMed  CAS  Google Scholar 

  • Fernandes PB, Hardy DJ. Comparative in vitro potencies of nine new macrolides. Drugs under Experimental Clinical Research 14: 445–451, 1988

    CAS  Google Scholar 

  • Fernandes PB, Hardy D, Bailer R, McDonald E, Pintar J, et al. Susceptibility testing of macrolide antibiotics against Haemphilus influenzae and correlation of in vitro results with in vivo efficacy in a mouse septicemia model. Antimicrobial Agents and Chemotherapy 31: 1243–1250, 1987

    Article  PubMed  CAS  Google Scholar 

  • Fernandes PB, Hardy DJ, McDaniel D, Hanson CW, Swanson RN. In vitro and in vivo activities of clarithromycin against Mycobacterium avium. Antimicrobial Agents and Chemotherapy 33: 1531–1534, 1989b

    Article  PubMed  CAS  Google Scholar 

  • Ferrero JL, Bopp BA, Marsh KC, Quigley SC, Johnson MJ, et al. Metabolism and disposition of clarithromycin in man. Drug Metabolism and Disposition 18: 441–446, 1990

    PubMed  CAS  Google Scholar 

  • Floyd-Reising S, Hindles JA, Young LS. In vitro activity of A-56268 (TE-031), a new macrolide antibiotic, compared with that of erythromycin and other antimicrobial agents. Antimicrobial Agents and Chemotherapy 31: 640–642, 1987

    Article  PubMed  CAS  Google Scholar 

  • Fraschini F. Clinical efficacy and tolerance of two new macrolides, Clarithromycin and Josamycin, in the treatment of patients with acute exacerbations of chronic bronchitis. Journal of International Medical Research 18: 171–176, 1990

    PubMed  CAS  Google Scholar 

  • Fraschini F. Distribution of clarithromycin and its metabolite in the therapeutically relevant respiratory tract. Abstract no. 311. 17th International Congress of Chemotherapy, Berlin, June 23-28, 1991

  • Fraschini F, Braga PC, Copponi V, Gattei G, Guerrasco E, et al. The tropism of erythromycin for the respiratory system. Journal of International Medical Research 8(Suppl.): 36–40, 1980

    PubMed  Google Scholar 

  • Fraschini F, Scaglione F, Ferrara F, Dugnani S, Demartini G. Evaluation of the immunostimulating activity of clarithromycin (CLAR) in humans. Abstract no. 113. 1st International Conference on the Macrolides, Azalides and Streptogramins. Santa Fe, New Mexico, January 22-25, 1992

  • Fraschini F, Scaglione F, Pintucci G, Maccarinelli G, Dugnani S, et al. The diffusion of clarithromycicn and roxithromycin into nasal mucosa, tonsil and lung in humans. Journal of Antimicrobial Chemotherapy 27(Suppl. 4): 61–65, 1991

    PubMed  Google Scholar 

  • Fuchi I, Noda K. TE-031 (A-56268) in chlamydial infections during the perinatal period. Chemotherapy 36(Suppl. 3): 891–894, 1988

    Google Scholar 

  • Gan VN, Chu SY, Kusmiesz HT, Craft JC. Pharmacokinetics of a clarithromycin suspension in infants and children. Antimicrobial Agents and Chemotherapy 36: 2478–2480, 1992

    Article  PubMed  CAS  Google Scholar 

  • Gevaudan M-J, Bollet C, Mallet M-N, de Micco P. Action des antibiotiques sur des variants pigmentè ou non pigmentès de Mycobacterium avium-intracellulare. Pathologie Biologie 39: 429–435, 1991

    PubMed  CAS  Google Scholar 

  • Gorzynski EA, Gutman SI, Allen W. Comparative antimycobacterial activities of difloxacin, temafloxacin, enoxacin, pefloxacin, reference fluoroquinolones, and a new macrolide, clarithromycin. Antimicrobial Agents and Chemotherapy 33: 591–592, 1989

    Article  PubMed  CAS  Google Scholar 

  • Halpert JR. Multiplicity of steroid-inducible cytochromes P-450 in rat liver microsomes. Archives of Biochemistry and Biophysics 263: 59–68, 1988

    Article  PubMed  CAS  Google Scholar 

  • Hardy DJ, Hensey DM, Beyer JM, Vojtko C, McDonald EJ, et al. Comparative in vitro activities of new 14-, 15- and 16-membered macrolides. Antimicrobial Agents and Chemotherapy 32: 1710–1719, 1988

    Article  PubMed  CAS  Google Scholar 

  • Hardy DJ, Swanson RN, Rode RA, Marsh K, Shipkovitz NL, et al. Enhancement of the in vitro and in vivo activities of clarithromycin against Haemophilis influenzae by 14-hydroxy-clarithromycin, its major metabolite in humans. Antimicrobial Agents and Chemotherapy 34: 1407–1413, 1990

    Article  PubMed  CAS  Google Scholar 

  • Hatano H, Wakamatsu H. TE-031 (A-56268) in ophthalmology. Chemotherapy 36(Suppl. 3): 1109–1113, 1988

    Google Scholar 

  • Hattori K, Higashino H, Takebe A, Sato Y, Takedatsu M, et al. Clinical study of clarithromycin, a new macrolide antibiotic, in children. Japanese Journal of Antibiotics 42: 371–380, 1989

    PubMed  CAS  Google Scholar 

  • Hodinka RL, Jack-Wait K, Gilligan PH. Comparative in vitro activity of A-56268 (TE-031), a new macrolide antibiotic. European Journal of Clinical Microbiology 6: 103–108, 1987

    Article  PubMed  CAS  Google Scholar 

  • Hoppe JE, Eichhorn A. Activity of new macrolides against Bordatella pertussis and Bordetella parapertussis. European Journal of Clinical Microbiology and Infectious Diseases 8: 653–654, 1989

    Article  CAS  Google Scholar 

  • Ito Y, Komeda H, Kobayashi K, Kanematsu M, Ban Y, et al. TE-031 (A-56268) against gonococcal and non-gonococcal urethritis. Chemotherapy 36(Suppl. 3): 832–837, 1988

    Google Scholar 

  • Kohno Y, Ohta K, Suwa T, Suga T. Autobacteriographic studies of clarithromycin and erythromycin in mice. Antimicrobial Agents and Chemotherapy 34: 562–567, 1990b

    Article  PubMed  CAS  Google Scholar 

  • Kohno Y, Yoshida H, Suwa T, Suga T. Comparative pharmacokinetics of clarithromycin (TE-031), a new macrolide antibiotic, and erythromycin in rats. Antimicrobial Agents and Chemotherapy 33: 751–756, 1989

    Article  PubMed  CAS  Google Scholar 

  • Kohno Y, Yoshida H, Suwa T, Suga T. Uptake of clarithromycin by rat lung cells. Journal of Antimicrobial Chemotherapy 26: 503–513, 1990a

    Article  PubMed  CAS  Google Scholar 

  • Labro MT, Amit N, Babin-Chevaye C, Hakin J. Sinergy between RU 28965 (Roxithromycin) and human neutrophils for bactericidal activity in vitro. Antimicrobial Agents and Chemotherapy 30: 137–142, 1986

    Article  PubMed  CAS  Google Scholar 

  • Larrey D, Funck-Bretano C, Brail P, Vitaux J, Theodore C, et al. Effects of erythromycin on hepatic drug-metabolizing enzymes in humans. Biochemical Pharmacology 32: 1063–1068, 1983a

    Article  PubMed  CAS  Google Scholar 

  • Larrey D, Tinel M, Pessayre D. Formation of inactive cytochrome P-450 Fe(II)-metabolite complexes with several erythromycin derivatives but not with josamycin and mideca-mycin in rats. Biochemical Pharmacology 32: 1487–1493, 1983b

    Article  PubMed  CAS  Google Scholar 

  • Liebers DM, Baltch AL, Smith RP, Hammer MC, Conroy JV, et al. Comparative in vitro activities of A-56268 (TE-031) and erythromycin against 306 clinical isolates. Journal of Antimicrobial Chemotherapy 21: 565–570, 1988

    Article  PubMed  CAS  Google Scholar 

  • Liebers DM, Baltch AL, Smith RP, Hammer MC, Conroy JV. Susceptibility of Legionella pneumophila to eight antimicrobial agents including four macrolides under different assay conditions. Journal of Antimicrobial Chemotherapy 23: 37–41, 1989

    Article  PubMed  CAS  Google Scholar 

  • Logan MN, Ashby JP, Andrews JM, Wise R. The in vitro activity and disc susceptibility testing for clarithromycin and its 14-hydroxy metabolite. Journal of Antimicrobial Chemotherapy 27: 161–170, 1991

    Article  PubMed  CAS  Google Scholar 

  • Maskell JP, Tang T, Asad S, Williams D. Comparative inhibitory and antibacterial activities of FCE 22101 against Gram-positive cocci and anaerobes in vitro. Journal of Antimicrobial Chemotherapy 23(Suppl. C): 64–65, 1989

    Google Scholar 

  • Mizushima H, Hiratsuka H. The first study on the pharmacokinetics and safety of TE-031 (A-56268) in volunteers. 26th Interscience Conference on Antimicrobial Agents and Chemotherapy, New Orleans, 28 September-1 October 1986. Abstract no. 418, p. 176, American Society for Microbiology, Washington, DC, 1986

    Google Scholar 

  • Mizushima Y, Hiratsuka H. General clinical study on Te-031 (A-56268). Chemotherapy 368(Suppl. 3): 452–499, 1988

    Google Scholar 

  • Morimoto S, Adachi T, Takahashi Y, Asaka T, Kashimura M, et al. A new macrolide antibiotic TE 031 (A-56268), synthesis and biological proterties. 26th Interscience Conference on Antimicrobial Agents and Chemotherapy, New Orleans, 28 September-1 October 1986. Abstract no. 409, p. 172, American Society for Microbiology, Washington, DC, 1986

    Google Scholar 

  • Motohiro T, Yoshinaga Y, Sasaki H, Oda K, Aramaki M, et al. Pharmacokinetics of clarithromycin granule and tablet in children. Japanese Journal of Antibiotics 42: 465–491, 1989

    PubMed  CAS  Google Scholar 

  • Nagate T, Sugita K, Miyachi J, Miyzzaki M, Takeichi C, et al. Assays for TE-031 (A-56268) in body fluids (I): microbiological assay. Chemotherapy 36: 170–191, 1988

    CAS  Google Scholar 

  • Naik S, Ruck R. In vitro activities of several new macrolide antibiotics against Mycobacterium avium complex. Antimicrobial Agents and Chemotherapy 33: 1614–1616, 1989

    Article  PubMed  CAS  Google Scholar 

  • Niki Y, Nakajima M, Tsukiyama K, Nakagawa Y, Umeki S, et al. Effect fo TE-031 (A-56268), a new oral macrolide antibiotic, on serum theophylline concentration. Chemotherapy 36(Suppl. 3): 515–520, 1988

    Google Scholar 

  • Nohara N, Akagi O, Ohara A, Onkawara A, Kumakiri M, et al. Comparative double-blind clinical trial on TE-031 (A-56268) and erythromycin in superficial suppurative skin and soft tissue infections. Chemotherapy 37: 173–198, 1989

    Google Scholar 

  • Ohta M, Shono S, Hori S, Ohnuki A, Toda K. Clinical efficacy and transfer of TE-031 (A-56268) to blood and skin. Chemotherapy 36: 961–965, 1988

    Google Scholar 

  • Ohtake T, Ogura K, Iwatate C, Suwa T. Assay method for TE-031 (A-56268) in body fluids (III): high performance liquid chromatographic assay method for TE-031 and its metabolites. Chemotherapy 36(Suppl. 3): 916–920, 1988

    CAS  Google Scholar 

  • O’Neill SJ, Millar ED, Coles SJ, Bachand RT. Safety and efficacy of clarithromycin in the treatment of acute mild to moderate respiratory tract infections. Irish Medical Journal 84: 33–35, 1991

    PubMed  Google Scholar 

  • Orme M, Back DJ, Tjia J, Martin C, Millar E, et al. The lack of interaction between clarithromycin and oral contraceptive steroids. British Journal of Clinical Pharmacology 31: 229P, 1991

    Google Scholar 

  • Periti P, Mazzei T, Mini E, Novelli A. Clinical Pharmacokinetic properties of the macrolide antibiotics: effect of age and various pathophysiological states (part I). Clinical Pharmacokinetics 16: 193–214, 1989

    Article  PubMed  CAS  Google Scholar 

  • Pessayre D., Descatoire V, Konstantinova-Mitcheva M, Wandscheer D. Self induction by triacetylolendomycin of its own transformation into a metabolite forming a stable 456 nm-absorbing complex with cytochrome P-450. Biochemical Pharmacology 30: 553–558, 1981a

    Article  PubMed  CAS  Google Scholar 

  • Pessayre D, Descatoire V, Tinel M, Larrey D. Self-induction by oleandomycin of its own transformation into a metabolite forming an inactive complex with reduced cytochrome P-450: comparison with troleandomycin. Journal of Pharmacology and Experimental Therapeutics 221: 215–221, 1982

    PubMed  CAS  Google Scholar 

  • Pessayre D, Konstantinova-Mitcheva M, Descatoire V, Cobert C, Wandscheer JC, et al. Hypoactivity of cytochrome P-450 after triacetylolenadomicin administration. Biochemical Pharmacology 30: 559–564, 1981b

    Article  PubMed  CAS  Google Scholar 

  • Peters DH, Clissold SP. Clarithromycin: a review of its antimicrobial activity, pharmacokinetic properties and therapeutic potential. Drugs 44: 117–164, 1992

    Article  PubMed  CAS  Google Scholar 

  • Prokesch RC, Hand WL. Antibiotic entry into human polymorphonuclear leukocytes. Antimicrobial Agents and Chemotherapy 21: 373–380, 1982

    Article  PubMed  CAS  Google Scholar 

  • Ridgway GL, Mumtaz G, Fenelon L. The in vitro activity of clarithromycin and other macrolides against the type strain of Chlamydia penumoniae (TWAR). Journal of Antimicrobial Chemotherapy 27(Suppl. A): 43–45,1991

    PubMed  CAS  Google Scholar 

  • Rolston K, Gooch G, Ho P. In vitro activity of clarithromycin (A-56268; TE-031) against Gram-positive bacteria. Correspondence. Journal of Antimicrobial Chemotherapy 23: 455–457, 1989

    Article  PubMed  CAS  Google Scholar 

  • Ruf B, Shurmann D, Mauch H, Fehrenbach FJ, Pohle HD, et al. Efficacy of clarithromycin (A-56268) in the acute and maintenance treatment of Mycobacterium avium-intracellulare infection in HIV-infected patients. Mikrobiologie und Hygene. American Review of Respiratory Disease 143: A116, 1991

    Google Scholar 

  • Saito A, Shimada J, Ohmori M, Shiba K, Yamaji T, et al. Clinical studies on TE-031 (A-56268). Chemotherapy 36(Suppl. 3): 576–585, 1988

    Google Scholar 

  • Sasaki J, Morishima T, Sakamoto H, Takai H, Ikeshima K, et al. Clinical evaluation of clarithromycin in treatment of acute dental infections. Japanese Journal of Antibiotics 42: 983–1013, 1989

    PubMed  CAS  Google Scholar 

  • Scaglione F. Comparison of the clinical and bacteriological efficacy of clarithromycin and erythromycin in the treatment of Streptococcal pharingitis. Current Medical Research and Opinion 12: 25–33, 1990

    Article  PubMed  CAS  Google Scholar 

  • Scaglione F, Dugnani S, Demartini G, Saudelli M, Galmozzi G, et al. Postantibiotic effect (PAE) of clarithromycin (CLAR) and its 14-0H metabolite. Abstract no. 131. 1st International Conference on the Macrolides, Azalides and Streptogramins. Santa Fé, NM, January 22-25, 1992

  • Scaglione F, Fraschini F. Distribution of clarithromycin (CLAR) and its metabolite (14-OH) in therapeutically relevant respiratory tract tissues and fluids. 1st International Conference on the Macrolides, Azalides and Streptogramins. Santa Fe, NM, January 22-25, 1992

  • Sefton AM, Maskell JP, Yong FJ, Laws KS, Bunnell ST, et al. Comparative in vitro activity of A-56268. European Journal of Clinical Microbiology and Infectious Diseases 7: 798–802, 1988

    Article  CAS  Google Scholar 

  • Sennello LT, Chu S-Y, Wilson DS, et al. Single dose pharmacokinetics of Abbott 56268 (TE-031) after oral dosing. 26th Interscience Conference on Antimicrobial Agents and Chemotherapy, New Orleans, 28 September-1 October, 1986. Abstract no. 419, American Society for Microbiology, Washington, DC, 1986

    Google Scholar 

  • Shigeoka H, Kosaka H, Kuwahara K, Kamei R, Takii M. Pharmacokinetic and clinical studies on TE-031 (A-56268). Chemotherapy 36(Suppl. 3): 679–686, 1988

    Google Scholar 

  • Shiiki K, Yamane N. Basic study on TE-031 (A-56268). Chemotherapy 36(Suppl. 3): 511–514, 1988

    CAS  Google Scholar 

  • Straneo G, Scarpazza G. Efficacy and safety of clarithromycin versus josamycin in the treatment of hospitalized patients with bacterial pneumonia. Journal of International Medical Research 18: 164–170, 1990

    PubMed  CAS  Google Scholar 

  • Sullivan MC, Quintiliani R, Nightingale CH. Antibiotic pharmacokinetics in the respiratory tract. 16th International Congress of Chemotherapy, Jerusalem, Israel, June 13, 1989. Abstracts book, p. 20, 1989

    Google Scholar 

  • Suwa T, Yoshida H, Kohno Y, Yoshitomi S, Ohta K. Metabolic fate of TE-031 (A-56268) III: absorption, distribution and excretion of 14C-TE-031 in rats, mice and dogs. Chemotherapy 36: 213–226, 1988a

    CAS  Google Scholar 

  • Suwa T, Yoshida H, Fukushima K, Nagate T. Metabolic fate of TE-031 (A-56268) I: comparative pharmacokinetics of TE-031 and erythromycin stearate in rats and mice. Chemotherapy 36: 198–204, 1988b

    CAS  Google Scholar 

  • Takii M, Shigeoka H, Ibaragi K, Kuwahara K, Kohno K. Pharmacokinetic study on TE-031 (A-56268) in subjects with various degrees of renal dysfunction. Chemotherapy 37: 15–21, 1989

    Google Scholar 

  • Tinel M, Descatoire V, Larrey D, Loeper J, Labbe G, et al. Effects of clarithromycin on cytochrome P-450. Comparison with other macrolides. Journal of Pharmacology and Experimental Therapeutics 250: 746–751, 1989

    PubMed  CAS  Google Scholar 

  • Vogel F. Efficacy and tollerability of clarithromycin in the short-course treatment of acute respiratory tract infections. Drug Investigation 3: 205–209, 1991

    Google Scholar 

  • Wollmer P, Pride NB, Rhodes CG, Sanders A, Pike VW, et al. Measurement of pulmonary erythromycin concentration in patients with lobar pneumonia by means of positron tomography. Lancet 2: 1361–1364, 1982

    Article  PubMed  CAS  Google Scholar 

  • Wrighton SA, Maurel P, Schuetz EG, Watkins PB, Young B, et al. Identification of the cytochrome P-450 induced by macrolide antibiotics in rat liver as the glucocorticoid responsive cytochrome P-450p. Biochemistry 24: 2171–2178, 1985

    Article  PubMed  CAS  Google Scholar 

  • Yoshii T, Motoji S, Nakasuji K, Ichii M, Kobayashi S, et al. Basic study on TE-031 (A-56268) in oral surgery. Chemotherapy 37: 1085–1089, 1989

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fraschini, F., Scaglione, F. & Demartini, G. Clarithromycin Clinical Pharmacokinetics. Clin-Pharmacokinet 25, 189–204 (1993). https://doi.org/10.2165/00003088-199325030-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-199325030-00003

Keywords

Navigation