Skip to main content

Homocysteine and Bone Health

  • Chapter
  • First Online:
Homocysteine Metabolism in Health and Disease

Abstract

Homocysteine is a sulfur-containing intermediary amino acid synthesized during methionine metabolism. Homocysteine has a significant role in the regulation of cell homeostasis but an elevated level of plasma homocysteine (hyperhomocysteinemia) is associated with vascular and various age-related pathologies. There are evidences from various laboratories and clinical studies that a high level of homocysteine shows deleterious effects on bone. Homocysteine is now considered as an independent risk factor for osteoporosis. Homocysteine exerts detrimental effects on both osteoclasts and osteoblasts. Homocysteine also promotes oxidative stress resulting in the generation of reactive oxygen species and disrupts cross-linking of collagen molecules. Thus, homocysteine impairs bone quality and reduces bone mass in several ways. In this book chapter, we reviewed all the known mechanisms responsible for hyperhomocysteinemia-induced osteoporosis. We also discuss the role of homocysteine-induced dysbiosis in bone resorption and the potential role of probiotics as a potent therapy for the prevention of homocysteine-induced bone loss along with other available therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alihosseini N, Moahboob SA, Farrin N, Mobasseri M, Taghizadeh A, Ostadrahimi AR (2017) Effect of probiotic fermented milk (Kefir) on serum level of insulin and homocysteine in type 2 diabetes patients. Acta Endocrinol 13(4):431–436

    CAS  Google Scholar 

  • Ansari R, Mahta A, Mallack E, Luo JJ (2014) Hyperhomocysteinemia and neurologic disorders: a review. J Clin Neurol 10(4):281–288

    Article  PubMed  PubMed Central  Google Scholar 

  • Anwar H, Rahman ZU, Javed I, Muhammad F (2012) Effect of protein, probiotic, and symbiotic supplementation on serum biological health markers of molted layers. Poult Sci 91(10):2606–2613

    Article  CAS  PubMed  Google Scholar 

  • Armour KE, Ralston SH (1998) Estrogen upregulates endothelial constitutive nitric oxide synthase expression in human osteoblast-like cells. Endocrinology 139(2):799–802

    Article  CAS  PubMed  Google Scholar 

  • Azizi ZA, Zamani A, Omrani LR, Omrani L, Dabaghmanesh MH, Mohammadi A, Namavar MR, Omrani GR (2010) Effects of hyperhomocysteinemia during the gestational period on ossification in rat embryo. Bone 46(5):1344–1348

    Article  CAS  PubMed  Google Scholar 

  • Bahtiri E, Islami H, Rexhepi S, Qorraj-Bytyqi H, Thaçi K, Thaçi S, Karakulak C, Hoxha R (2015) Relationship of homocysteine levels with lumbar spine and femur neck BMD in postmenopausal women. Acta Reumatol Port 40(4):355–362

    CAS  PubMed  Google Scholar 

  • Banfi G, Iorio EL, Corsi MM (2008) Oxidative stress, free radicals and bone remodeling. Clin Chem Lab Med 46(11):1550–1555

    Article  CAS  PubMed  Google Scholar 

  • Barreto FM, Colado Simão AN, Morimoto HK, Batisti Lozovoy MA, Dichi I, da Silva H, Miglioranza L (2014) Beneficial effects of lactobacillus plantarum on glycemia and homocysteine levels in postmenopausal women with metabolic syndrome. Nutrition 30(7–8):939–942

    Article  CAS  PubMed  Google Scholar 

  • Bax BE, Alam AS, Banerji B, Bax CM, Bevis PJ, Stevens CR, Moonga BS, Blake DR, Zaidi M (1992) Stimulation of osteoclastic bone resorption by hydrogen peroxide. Biochem Biophys Res Commun 183(3):1153–1158

    Article  CAS  PubMed  Google Scholar 

  • Behera J, Bala J, Nuru M, Tyagi SC, Tyagi N (2017) Homocysteine as a pathological biomarker for bone disease. J Cell Physiol 232(10):2704–2709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Behera J, George AK, Voor MJ, Tyagi SC, Tyagi N (2018) Hydrogen sulfide epigenetically mitigates bone loss through OPG/RANKL regulation during hyperhomocysteinemia in mice. Bone 114:90–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Best PJ, Berger PB, Miller VM, Lerman A (1998) The effect of estrogen replacement therapy on plasma nitric oxide and endothelin-1 levels in postmenopausal women. Ann Intern Med 128(4):285–288

    Article  CAS  PubMed  Google Scholar 

  • Bozkurt N, Erdem M, Yilmaz E, Erdem A, Biri A, Kubatova A, Bozkurt M (2009) The relationship of homocyteine, B12 and folic acid with the bone mineral density of the femur and lumbar spine in Turkish postmenopausal women. Arch Gynecol Obstet 280(3):381–387

    Article  CAS  PubMed  Google Scholar 

  • Burge R, Dawson-Hughes B, Solomon DH, Wong JB, King A, Tosteson A (2007) Incidence and economic burden of osteoporosis-related fractures in the United States, 2005–2025. J Bone Miner Res 22(3):465–475

    Article  PubMed  Google Scholar 

  • Burrage PS, Mix KS, Brinckerhoff CE (2006) Matrix metalloproteinases: role in arthritis. Front Biosci 11:529–543

    Article  CAS  PubMed  Google Scholar 

  • Cagnacci A, Bagni B, Zini A, Cannoletta M, Generali M, Volpe A (2008) Relation of folates, vitamin B12 and homocysteine to vertebral bone mineral density change in postmenopausal women. A five-year longitudinal evaluation. Bone 42(2):314–320

    Article  CAS  PubMed  Google Scholar 

  • Cashman KD (2005) Homocysteine and osteoporotic fracture risk: a potential role for B vitamins. Nutr Rev 63(1):29–36

    Article  PubMed  Google Scholar 

  • Chenu C, Serre CM, Raynal C, Burt-Pichat B, Delmas PD (1998) Glutamate receptors are expressed by bone cells and are involved in bone resorption. Bone 22(97):295–299

    Article  CAS  PubMed  Google Scholar 

  • Claes L, Schmalenbach J, Herrmann M, Olkü I, Garcia P, Histing T, Obeid R, Schorr H, Herrmann W, Pohlemann T, Menger MD, Holstein JH (2009) Hyperhomocysteinemia is associated with impaired fracture healing in mice. Calcif Tissue Int 85(1):17–21

    Article  CAS  PubMed  Google Scholar 

  • Compston JE, McClung MR, Leslie WD (2019) Osteoporosis. Lancet 393(10169):364–376

    Article  CAS  PubMed  Google Scholar 

  • Dar HY, Azam Z, Anupam R, Mondal RK, Srivastava RK (2018) Osteoimmunology: the nexus between bone and immune system. Front Biosci (Landmark Ed) 23:464–492

    Article  CAS  Google Scholar 

  • De Martinis M, Sirufo MM, Nocelli C, Fontanella L, Ginaldi L (2020) Hyperhomocysteinemia is associated with inflammation, bone resorption, vitamin B12 and folate deficiency and MTHFR C677T polymorphism in postmenopausal women with decreased bone mineral density. Int J Environ Res Public Health 17(12):4260

    Article  PubMed Central  CAS  Google Scholar 

  • Dhonukshe-Rutten RA, Pluijm SM, de Groot LC, Lips P, Smit JH, van Staveren WA (2005) Homocysteine and vitamin B12 status relate to bone turnover markers, broadband ultrasound attenuation, and fractures in healthy elderly people. J Bone Miner Res 20(6):921–929

    Article  CAS  PubMed  Google Scholar 

  • Dimitrova KR, DeGroot K, Myers AK, Kim YD (2002) Estrogen and homocysteine. Cardiovasc Res 53(3):577–588

    Article  CAS  PubMed  Google Scholar 

  • Fajardo M, Liu C-J, Ilalov K, Egol KA (2010) Matrix metalloproteinases that associate with and cleave bone morphogenetic protein-2 in vitro are elevated in hypertrophic fracture nonunion tissue. J Orthop Trauma 24(9):557–563

    Article  PubMed  Google Scholar 

  • Fan Y, Pedersen O (2021) Gut microbiota in human metabolic health and disease. Nat Rev Microbiol 19(1):55–71

    Article  CAS  PubMed  Google Scholar 

  • Fleming JT, Barati MT, Beck DJ, Dodds JC, Malkani AL, Parameswaran D, Soukhova GK, Voor MJ, Feitelson JB (2001) Bone blood flow and vascular reactivity. Cells Tissues Organs 169(3):279–284

    Article  CAS  PubMed  Google Scholar 

  • Fu X, Kassim SY, Parks WC, Heinecke JW (2001) Hypochlorous acid oxygenates the cysteine switch domain of pro-matrilysin (MMP-7). A mechanism for matrix metalloproteinase activation and atherosclerotic plaque rupture by myeloperoxidase. J Biol Chem 276(44):41279–41287

    Article  CAS  PubMed  Google Scholar 

  • Garrett IR, Boyce BF, Oreffo RO, Bonewald L, Poser J, Mundy GR (1990) Oxygen-derived free radicals stimulate osteoclastic bone resorption in rodent bone in vitro and in vivo. J Clin Invest 85(3):632–639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • George AK, Singh M, Pushpakumar S, Homme RP, Hardin SJ, Tyagi SC (2020) Dysbiotic 1-carbon metabolism in cardiac muscle remodeling. J Cell Physiol 235(3):2590–2598

    Article  CAS  PubMed  Google Scholar 

  • Gerdhem P, Ivaska KK, Isaksson A, Pettersson K, Väänänen HK, Obrant KJ, Akesson K (2007) Associations between homocysteine, bone turnover, BMD, mortality, and fracture risk in elderly women. J Bone Miner Res 22(1):127–134

    Article  CAS  PubMed  Google Scholar 

  • Giri S, Thompson PD, Taxel P, Contois JH, Otvos J, Allen R, Ens G, Wu AH, Waters DD (1998) Oral estrogen improves serum lipids, homocysteine and fibrinolysis in elderly men. Atherosclerosis 137(2):359–366

    Article  CAS  PubMed  Google Scholar 

  • Gjesdal CG, Vollset SE, Ueland PM, Refsum H, Drevon CA, Gjessing HK, Tell GS (2006) Plasma total homocysteine level and bone mineral density: the Hordaland homocysteine study. Arch Intern Med 166(1):88–94

    Article  CAS  PubMed  Google Scholar 

  • Green TJ, McMahon JA, Skeaff CM, Williams SM, Whiting SJ (2007) Lowering homocysteine with B vitamins has no effect on biomarkers of bone turnover in older persons: a 2-y randomized controlled trial. Am J Clin Nutr 85(2):460–464

    Article  CAS  PubMed  Google Scholar 

  • Harma M, Harma M, Kocyigit A, Yaltali T (2005) Intranasal 17beta-estradiol treatment and vitamin B12, folate and homocysteine in menopause. Maturitas 50(4):353–358

    Article  CAS  PubMed  Google Scholar 

  • Herrmann M, Widmann T, Colaianni G, Colucci S, Zallone A, Herrmann W (2005) Increased osteoclast activity in the presence of increased homocysteine concentrations. Clin Chem 51(12):2348–2353

    Article  CAS  PubMed  Google Scholar 

  • Herrmann M, Stanger O, Paulweber B, Hufnagl C, Herrmann W (2006) Folate supplementation does not affect biochemical markers of bone turnover. Clin Lab 52(3–4):131–136

    CAS  PubMed  Google Scholar 

  • Herrmann M, Umanskaya N, Traber L, Schmidt-Gayk H, Menke W, Lanzer G, Lenhart M, Peter Schmidt J, Herrmann W (2007) The effect of B-vitamins on biochemical bone turnover markers and bone mineral density in osteoporotic patients: a 1-year double blind placebo controlled trial. Clin Chem Lab Med 45(12):1785–1792

    CAS  PubMed  Google Scholar 

  • Herrmann M, Tami A, Wildemann B, Wolny M, Wagner A, Schorr H, Taban-Shomal O, Umanskaya N, Ross S, Garcia P, Hübner U, Herrmann W (2009) Hyperhomocysteinemia induces a tissue specific accumulation of homocysteine in bone by collagen binding and adversely affects bone. Bone 44(3):467–475

    Article  CAS  PubMed  Google Scholar 

  • Herrmann W, Kirsch SH, Kruse V, Eckert R, Gräber S, Geisel J, Obeid R (2013) One year B and D vitamins supplementation improves metabolic bone markers. Clin Chem Lab Med 51(3):639–647

    CAS  PubMed  Google Scholar 

  • Holstein JH, Herrmann M, Splett C, Herrmann W, Garcia P, Histing T, Klein M, Kurz K, Siebel T, Pohlemann T, Menger MD (2011) High bone concentrations of homocysteine are associated with altered bone morphology in humans. Br J Nutr 106(3):378–382

    Article  CAS  PubMed  Google Scholar 

  • Huang YS, Zhi YF, Wang SR (2009) Hypermethylation of estrogen receptor-alpha gene in atheromatosis patients and its correlation with homocysteine. Pathophysiology 16(4):259–265

    Article  CAS  PubMed  Google Scholar 

  • Itzstein C, Cheynel H, Burt-Pichat B, Merle B, Espinosa L, Delmas PD, Chenu C (2001) Molecular identification of NMDA glutamate receptors expressed in bone cells. J Cell Biochem 82(1):134–144

    Article  CAS  PubMed  Google Scholar 

  • Kanazawa I, Tomita T, Miyazaki S, Ozawa E, Yamamoto LA, Sugimoto T (2017) Bazedoxifene ameliorates homocysteine-induced apoptosis and accumulation of advanced glycation end products by reducing oxidative stress in MC3T3-E1 cells. Calcif Tissue Int 100(3):286–297

    Article  CAS  PubMed  Google Scholar 

  • Keser I, Ilich JZ, Vrkić N, Giljević Z, Colić Barić I (2013) Folic acid and vitamin B12 supplementation lowers plasma homocysteine but has no effect on serum bone turnover markers in elderly women: a randomized, double-blind, placebo-controlled trial. Nutr Res 33(3):211–219

    Article  CAS  PubMed  Google Scholar 

  • Khan M, Yamauchi M, Srisawasdi S, Stiner D, Doty S, Paschalis EP, Boskey AL (2001) Homocysteine decreases chondrocyte-mediated matrix mineralization in differentiating chick limb-bud mesenchymal cell micro-mass cultures. Bone 28(4):387–398

    Article  CAS  PubMed  Google Scholar 

  • Kim DJ, Park BL, Koh JM, Kim GS, Kim LH, Cheong HS, Shin HD, Hong JM, Kim TH, Shin HI, Park EK, Kim SY (2006) Methionine synthase reductase polymorphisms are associated with serum osteocalcin levels in postmenopausal women. Exp Mol Med 38(5):519–524

    Article  CAS  PubMed  Google Scholar 

  • Kim WK, Ke K, Sul OJ, Kim HJ, Kim SH, Lee MH, Kim HJ, Kim SY, Chung HT, Choi HS (2011) Curcumin protects against ovariectomy-induced bone loss and decreases osteoclastogenesis. J Cell Biochem 112(11):3159–3166

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Kim H, Roh H, Kwon Y (2018) Causes of hyperhomocysteinemia and its pathological significance. Arch Pharm Res 41(4):372–383

    Article  CAS  PubMed  Google Scholar 

  • Koh JM, Lee YS, Kim YS, Kim DJ, Kim HH, Park JY, Lee KU, Kim GS (2006) Homocysteine enhances bone resorption by stimulation of osteoclast formation and activity through increased intracellular ROS generation. J Bone Miner Res 21(7):1003–1011

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Palfrey HA, Pathak R, Kadowitz PJ, Gettys TW, Murthy SN (2017) The metabolism and significance of homocysteine in nutrition and health. Nutr Metab (Lond) 14:78

    Article  CAS  Google Scholar 

  • Lean JM, Davies JT, Fuller K, Jagger CJ, Kirstein B, Partington GA, Urry ZL, Chambers TJ (2003) A crucial role for thiol antioxidants in estrogen-deficiency bone loss. J Clin Invest 112(6):915–923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee SJ, Lee YS, Seo KW, Bae JU, Kim GH, Park SY, Kim CD (2012) Homocysteine enhances MMP-9 production in murine macrophages via ERK and Akt signaling pathways. Toxicol Appl Pharmacol 260(1):89–94

    Article  CAS  PubMed  Google Scholar 

  • Li JY, Chassaing B, Tyagi AM, Vaccaro C, Luo T, Adams J, Darby TM, Weitzmann MN, Mulle JG, Gewirtz AT, Jones RM, Pacifici R (2016) Sex steroid deficiency–associated bone loss is microbiota dependent and prevented by probiotics. J Clin Invest 126(6):2049–2063

    Article  PubMed  PubMed Central  Google Scholar 

  • Liang S, Liu S, Liu H, He X, Sun L, Chen L, Wei M, Gao F, Jiang H (2018) Homocysteine aggravates intestinal epithelial barrier dysfunction in rats with experimental uremia. Kidney Blood Press Res 43(5):1516–1528

    Article  CAS  PubMed  Google Scholar 

  • Lurz E, Horne RG, Määttänen P, Wu RY, Botts SR, Li B, Rossi L, Johnson-Henry KC, Pierro A, Surette MG, Sherman PM (2020) Vitamin B12 deficiency alters the gut microbiota in a murine model of colitis. Front Nutr 7:83

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lv H, Ma X, Che T, Chen Y (2011) Methylation of the promoter a of estrogen receptor alpha gene in hBMSC and osteoblasts and its correlation with homocysteine. Mol Cell Biochem 355(1–2):35–45

    Article  CAS  PubMed  Google Scholar 

  • Majewska K, Kręgielska-Narożna M, Jakubowski H, Szulińska M, Bogdański P (2020) The multispecies probiotic effectively reduces homocysteine concentration in obese women: a randomized double-blind placebo-controlled study. J Clin Med 9(4):998

    Article  CAS  PubMed Central  Google Scholar 

  • Majtan T, Park I, Bublil EM, Kraus JP (2018) Enzyme replacement therapy prevents loss of bone and fat mass in murine homocystinuria. Hum Mutat 39(2):210–218

    Article  CAS  PubMed  Google Scholar 

  • Marenzana M, Arnett TR (2013) The key role of the blood supply to bone. Bone Res 1(3):203–215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCarthy ID (2005) Fluid shifts due to microgravity and their effects on bone: a review of current knowledge. Ann Biomed Eng 33(1):95–103

    Article  PubMed  Google Scholar 

  • McMullin MF, Young PB, Bailie KE, Savage GA, Lappin TR, White R (2001) Homocysteine and methylmalonic acid as indicators of folate and vitamin B12 deficiency in pregnancy. Clin Lab Haematol 23(3):161–165

    Article  CAS  PubMed  Google Scholar 

  • McNeill AM, Zhang C, Stanczyk FZ, Duckles SP, Krause DN (2002) Estrogen increases endothelial nitric oxide synthase via estrogen receptors in rat cerebral blood vessels. Stroke 33(6):1685–1691

    Article  CAS  PubMed  Google Scholar 

  • Mijatovic V, Kenemans P, Jakobs C, van Baal WM, Peters-Muller ER, van der Mooren MJ (1998) A randomized controlled study of the effects of 17beta-estradiol-dydrogesterone on plasma homocysteine in postmenopausal women. Obstet Gynecol 91(3):432–436

    Article  CAS  PubMed  Google Scholar 

  • Milovanovic P, Hrncic D, Radotic K, Tankovic M, Mutavdzic D, Djonic D, Rasic-Markovic A, Djuric D, Stanojlovic O, Djuric M (2017) Moderate hyperhomocysteinemia induced by short-term dietary methionine overload alters bone microarchitecture and collagen features during growth. Life Sci 191:9–16

    Article  CAS  PubMed  Google Scholar 

  • Mohammad G, Kowluru RA (2020) Homocysteine disrupts balance between MMP-9 and its tissue inhibitor in diabetic retinopathy: the role of DNA methylation. Int J Mol Sci 21(5):1771

    Article  CAS  PubMed Central  Google Scholar 

  • Mohammad MA, Molloy A, Scott J, Hussein L (2006) Plasma cobalamin and folate and their metabolic markers methylmalonic acid and total homocysteine among Egyptian children before and after nutritional supplementation with the probiotic bacteria lactobacillus acidophilus in yoghurt matrix. Int J Food Sci Nutr 57(7–8):470–480

    Article  CAS  PubMed  Google Scholar 

  • Morris MS, Jacques PF, Selhub J, Rosenberg IH (2000) Total homocysteine and estrogen status indicators in the third National Health and Nutrition Examination survey. Am J Epidemiol 152(2):140–148

    Article  CAS  PubMed  Google Scholar 

  • Morris MS, Jacques PF, Selhub J (2005) Relation between homocysteine and B-vitamin status indicators and bone mineral density in older Americans. Bone 37(2):234–242

    Article  CAS  PubMed  Google Scholar 

  • Moshal KS, Singh M, Sen U, Rosenberger DS, Henderson B, Tyagi N, Zhang H, Tyagi SC (2006) Homocysteine-mediated activation and mitochondrial translocation of calpain regulates MMP-9 in MVEC. Am J Physiol Heart Circ Physiol 291(6):H2825–H2835

    Article  CAS  PubMed  Google Scholar 

  • Moshal KS, Metreveli N, Frank I, Tyagi SC (2008) Mitochondrial MMP activation, dysfunction and arrhythmogenesis in hyperhomocysteinemia. Curr Vasc Pharmacol 6(2):84–92

    Article  CAS  PubMed  Google Scholar 

  • Neetu T, Vacek T, Vacek JC et al (2011) Hyperhomocysteinemia decreases bone blood flow. Vasc Health Risk Manag 31. https://doi.org/10.2147/VHRM.S15844

  • Notsu M, Kanazawa I, Takeno A, Tanaka KI, Sugimoto T (2019) Bazedoxifene ameliorates homocysteine-induced apoptosis via NADPH oxidase-interleukin 1β and 6 pathway in osteocyte-like cells. Calcif Tissue Int 105(4):446–457

    Article  CAS  PubMed  Google Scholar 

  • Ouzzif Z, Oumghar K, Sbai K, Mounach A, Derouiche el M, El Maghraoui A (2012) Relation of plasma total homocysteine, folate and vitamin B12 levels to bone mineral density in Moroccan healthy postmenopausal women. Rheumatol Int 32(1):123–128

    Article  CAS  PubMed  Google Scholar 

  • Ozdem S, Samanci S, Tasatargil A, Yildiz A, Sadan G, Donmez L, Herrmann M (2007) Experimental hyperhomocysteinemia disturbs bone metabolism in rats. Scand J Clin Lab Invest 67(7):748–756

    Article  CAS  PubMed  Google Scholar 

  • Panza E, De Cicco P, Armogida C, Scognamiglio G, Gigantino V, Botti G, Germano D, Napolitano M, Papapetropoulos A, Bucci M, Cirino G, Ianaro A (2015) Role of the cystathionine γ lyase/hydrogen sulfide pathway in human melanoma progression. Pigment Cell Melanoma Res 28(1):61–72

    Article  CAS  PubMed  Google Scholar 

  • Pasternak B, Aspenberg P (2009) Metalloproteinases and their inhibitors-diagnostic and therapeutic opportunities in orthopedics. Acta Orthop 80(6):693–703

    Article  PubMed  PubMed Central  Google Scholar 

  • Poddar R, Paul S (2009) Homocysteine-NMDA receptor-mediated activation of extracellular signal-regulated kinase leads to neuronal cell death. J Neurochem 110(3):1095–1106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pruefer D, Scalia R, Lefer AM (1999) Homocysteine provokes leukocyte–endothelium interaction by downregulation of nitric oxide. Gen Pharmacol 33(6):487–498

    Article  CAS  PubMed  Google Scholar 

  • Rehackova P, Skalova S, Kutilek S (2013) Serum homocysteine levels in children and adolescents with impaired bone health. Rev Bras Reumatol 53(6):464–468

    Article  PubMed  Google Scholar 

  • Rejnmark L, Vestergaard P, Hermann AP, Brot C, Eiken P, Mosekilde L (2008) Dietary intake of folate, but not vitamin B2 or B12, is associated with increased bone mineral density 5 years after the menopause: results from a 10-year follow-up study in early postmenopausal women. Calcif Tissue Int 82(1):1–11

    Article  CAS  PubMed  Google Scholar 

  • Riggs BL (2000) The mechanisms of estrogen regulation of bone resorption. J Clin Invest 106(10):1203–1204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Röth D, Chiang AJ, Hu W, Gugiu GB, Morra CN, Versalovic J, Kalkum M (2019) Two-carbon folate cycle of commensal lactobacillus reuteri 6475 gives rise to immunomodulatory ethionine, a source for histone ethylation. FASEB J 33(3):3536–3548

    Article  PubMed  Google Scholar 

  • Sakamoto W, Isomura H, Fujie K, Deyama Y, Kato A, Nishihira J, Izumi H (2005) Homocysteine attenuates the expression of osteocalcin but enhances osteopontin in MC3T3-E1 preosteoblastic cells. Biochim Biophys Acta 1740(1):12–16

    Article  CAS  PubMed  Google Scholar 

  • Sánchez-Rodríguez MA, Ruiz-Ramos M, Correa-Muñoz E, Mendoza-Núñez VM (2007) Oxidative stress as a risk factor for osteoporosis in elderly Mexicans as characterized by antioxidant enzymes. BMC Musculoskelet Disord 8:124

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sanguineti R, Storace D, Monacelli F, Federici A, Odetti P (2008) Pentosidine effects on human osteoblasts in vitro. Ann N Y Acad Sci 1126:166–172

    Article  CAS  PubMed  Google Scholar 

  • Saoji R, Das RS, Desai M, Pasi A, Sachdeva G, Das TK, Khatkhatay MI (2018) Association of high-density lipoprotein, triglycerides, and homocysteine with bone mineral density in young Indian tribal women. Arch Osteoporos 13(1):108

    Article  PubMed  Google Scholar 

  • Schett G, David JP (2010) The multiple faces of autoimmune-mediated bone loss. Nat Rev Endocrinol 6(12):698–706

    Article  CAS  PubMed  Google Scholar 

  • Selhub J (1999) Homocysteine metabolism. Annu Rev Nutr 19:217–246

    Article  CAS  PubMed  Google Scholar 

  • Shahab-Ferdows S, Anaya-Loyola MA, Vergara-Castañeda H, Rosado JL, Keyes WR, Newman JW, Miller JW, Allen LH (2012) Vitamin B-12 supplementation of rural Mexican women changes biochemical vitamin B-12 status indicators but does not affect hematology or a bone turnover marker. J Nutr 142(10):1881–1887

    Article  CAS  PubMed  Google Scholar 

  • Skrypnik K, Bogdański P, Sobieska M, Suliburska J (2020) Hepcidin and Erythroferrone correlate with hepatic iron transporters in rats supplemented with multispecies probiotics. Molecules 25(7):1674

    Article  CAS  PubMed Central  Google Scholar 

  • Solini A, Santini E, Nannipieri M, Ferrannini E (2006) High glucose and homocysteine synergistically affect the metalloproteinases-tissue inhibitors of metalloproteinases pattern, but not TGFB expression, in human fibroblasts. Diabetologia 49(10):2499–2506

    Article  CAS  PubMed  Google Scholar 

  • Srivastava RK, Dar HY, Mishra PK (2018) Immunoporosis: immunology of osteoporosis—role of T cells. Front Immunol 9:657

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stanisic D, Jovanovic M, George AK, Homme RP, Tyagi N, Singh M, Tyagi SC (2021) Gut microbiota and the periodontal disease: role of hyperhomocysteinemia. Can J Physiol Pharmacol 99(1):9–17

    Article  CAS  PubMed  Google Scholar 

  • Strozzi GP, Mogna L (2008) Quantification of folic acid in human feces after administration of Bifidobacterium probiotic strains. J Clin Gastroenterol 42(Suppl 3):S179–S184

    Article  CAS  PubMed  Google Scholar 

  • Su Y, Elshorbagy A, Turner C, Refsum H, Chan R, Kwok T (2019) Circulating amino acids are associated with bone mineral density decline and ten-year major osteoporotic fracture risk in older community-dwelling adults. Bone 129:115082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun HY, Qu QM (2019) Hypermethylation of ERа-A gene and high serum homocysteine level are correlated with cognitive impairment in white matter hyperintensity patients. QJM 112(5):351–354

    Article  CAS  PubMed  Google Scholar 

  • Sunyer T, Rothe L, Kirsch D, Jiang X, Anderson F, Osdoby P, Collin-Osdoby P (1997) Ca2+ or phorbol ester but not inflammatory stimuli elevate inducible nitric oxide synthase messenger ribonucleic acid and nitric oxide (NO) release in avian osteoclasts: autocrine NO mediates Ca2+−inhibited bone resorption. Endocrinology 138(5):2148–2162

    Article  CAS  PubMed  Google Scholar 

  • Swart KMA, van Schoor NM, Lips P (2013) Vitamin B12, folic acid, and bone. Curr Osteoporos Rep 11(3):213–218

    Article  PubMed  Google Scholar 

  • Takeno A, Kanazawa I, Tanaka K, Notsu M, Yokomoto M, Yamaguchi T, Sugimoto T (2015) Activation of AMP-activated protein kinase protects against homocysteine-induced apoptosis of osteocytic MLO-Y4 cells by regulating the expressions of NADPH oxidase 1 (Nox1) and Nox2. Bone 77:135–141

    Article  CAS  PubMed  Google Scholar 

  • Takeno A, Kanazawa I, Tanaka K, Notsu M, Yokomoto-Umakoshi M, Sugimoto T (2016) Simvastatin rescues homocysteine-induced apoptosis of osteocytic MLO-Y4 cells by decreasing the expressions of NADPH oxidase 1 and 2. Endocr J 63(4):389–395

    Article  CAS  PubMed  Google Scholar 

  • Taki K, Takayama F, Niwa T (2005) Beneficial effects of Bifidobacteria in a gastroresistant seamless capsule on hyperhomocysteinemia in hemodialysis patients. J Ren Nutr 15(1):77–80

    Article  PubMed  Google Scholar 

  • Thaler R, Spitzer S, Rumpler M, Fratzl-Zelman N, Klaushofer K, Paschalis EP, Varga F (2010) Differential effects of homocysteine and beta aminopropionitrile on preosteoblastic MC3T3-E1 cells. Bone 46(3):703–709

    Article  CAS  PubMed  Google Scholar 

  • Thaler R, Agsten M, Spitzer S, Paschalis EP, Karlic H, Klaushofer K, Varga F (2011) Homocysteine suppresses the expression of the collagen cross-linker lysyl oxidase involving IL-6, Fli1, and epigenetic DNA methylation. J Biol Chem 286(7):5578–5588

    Article  CAS  PubMed  Google Scholar 

  • Thaler R, Zwerina J, Rumpler M, Spitzer S, Gamsjaeger S, Paschalis EP, Klaushofer K, Varga F (2013) Homocysteine induces serum amyloid A3 in osteoblasts via unlocking RGD-motifs in collagen. FASEB J 27(2):446–463

    Article  CAS  PubMed  Google Scholar 

  • Tillmann S, Awwad HM, Eskelund AR, Treccani G, Geisel J, Wegener G, Obeid R (2018) Probiotics affect one-carbon metabolites and Catecholamines in a genetic rat model of depression. Mol Nutr Food Res 62(7):e1701070

    Article  PubMed  CAS  Google Scholar 

  • Tu KN, Lie JD, Wan CKV, Cameron M, Austel AG, Nguyen JK, Van K, Hyun D (2018) Osteoporosis: a review of treatment options. P T 43(2):92–104

    PubMed  PubMed Central  Google Scholar 

  • Tyagi N, Sedoris KC, Steed M, Ovechkin AV, Moshal KS, Tyagi SC (2005) Mechanisms of homocysteine-induced oxidative stress. Am J Physiol Heart Circ Physiol 289(6):H2649–H2656

    Article  CAS  PubMed  Google Scholar 

  • Tyagi N, Kandel M, Munjal C, Qipshidze N, Vacek JC, Pushpakumar SB, Metreveli N, Tyagi SC (2011a) Homocysteine mediated decrease in bone blood flow and remodeling: role of folic acid. J Orthop Res 29(10):1511–1516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tyagi N, Vacek TP, Fleming JT, Vacek JC, Tyagi SC (2011b) Hyperhomocysteinemia decreases bone blood flow. Vasc Health Risk Manag 7:31–35

    PubMed  PubMed Central  Google Scholar 

  • Vacek TP, Kalani A, Voor MJ, Tyagi SC, Tyagi N (2013) The role of homocysteine in bone remodeling. Clin Chem Lab Med 51(3):579–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vaes BLT, Lute C, Blom HJ, Bravenboer N, de Vries TJ, Everts V, Dhonukshe-Rutten RA, Müller M, de Groot LC, Steegenga WT (2009) Vitamin B(12) deficiency stimulates osteoclastogenesis via increased homocysteine and methylmalonic acid. Calcif Tissue Int 84(5):413–422

    Article  CAS  PubMed  Google Scholar 

  • Valentini L, Pinto A, Bourdel-Marchasson I, Ostan R, Brigidi P, Turroni S, Hrelia S, Hrelia P, Bereswill S, Fischer A, Leoncini E, Malaguti M, Blanc-Bisson C, Durrieu J, Spazzafumo L, Buccolini F, Pryen F, Donini LM, Franceschi C, Lochs H (2015) Impact of personalized diet and probiotic supplementation on inflammation, nutritional parameters and intestinal microbiota - the “RISTOMED project”: randomized controlled trial in healthy older people. Clin Nutr 34(4):593–602

    Article  PubMed  Google Scholar 

  • van Baal WM, Smolders RG, van der Mooren MJ, Teerlink T, Kenemans P (1999) Hormone replacement therapy and plasma homocysteine levels. Obstet Gynecol 94(4):485–491

    Article  PubMed  Google Scholar 

  • van Meurs JB, Dhonukshe-Rutten RA, Pluijm SM, van der Klift M, de Jonge R, Lindemans J, de Groot LC, Hofman A, Witteman JC, van Leeuwen JP, Breteler MM, Lips P, Pols HA, Uitterlinden AG (2004) Homocysteine levels and the risk of osteoporotic fracture. N Engl J Med 350(20):2033–2041

    Article  PubMed  Google Scholar 

  • van’t Hof RJ, MacPhee J, Libouban H, Helfrich MH, Ralston SH (2004) Regulation of bone mass and bone turnover by neuronal nitric oxide synthase. Endocrinology 145(11):5068–5074

    Article  CAS  Google Scholar 

  • Vijayan V, Khandelwal M, Manglani K, Singh RR, Gupta S, Surolia A (2013) Homocysteine alters the osteoprotegerin/RANKL system in the osteoblast to promote bone loss: pivotal role of the redox regulator forkhead O1. Free Radic Biol Med 61:72–84

    Article  CAS  PubMed  Google Scholar 

  • Vu TH, Shipley JM, Bergers G, Berger JE, Helms JA, Hanahan D, Shapiro SD, Senior RM, Werb Z (1998) MMP-9/gelatinase B is a key regulator of growth plate angiogenesis and apoptosis of hypertrophic chondrocytes. Cell 93(3):411–422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walsh MC, Kim N, Kadono Y, Rho J, Lee SY, Lorenzo J, Choi Y (2006) Osteoimmunology: interplay between the immune system and bone metabolism. Annu Rev Immunol 24:33–63

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Wu Y, Wang Y, Xu H, Mei X, Yu D, Wang Y, Li W (2017) Antioxidant properties of probiotic bacteria. Nutrients 9(5):521

    Article  PubMed Central  CAS  Google Scholar 

  • Weber DR, Coughlin C, Brodsky JL, Lindstrom K, Ficicioglu C, Kaplan P, Freehauf CL, Levine MA (2016) Low bone mineral density is a common finding in patients with homocystinuria. Mol Genet Metab 117(3):351–354

    Article  CAS  PubMed  Google Scholar 

  • Wimalawansa SJ (2010) Nitric oxide and bone. Ann N Y Acad Sci 1192:391–403

    Article  CAS  PubMed  Google Scholar 

  • Xu Z, Xie Z, Sun J, Huang S, Chen Y, Li C, Sun X, Xia B, Tian L, Guo C, Li F, Pi G (2020) Gut microbiome reveals specific Dysbiosis in primary osteoporosis. Front Cell Infect Microbiol 10:160

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yatsonsky Ii D, Pan K, Shendge VB, Liu J, Ebraheim NA (2019) Linkage of microbiota and osteoporosis: a mini literature review. World J Orthop 10(3):123–127

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhai Y, Behera J, Tyagi SC, Tyagi N (2019) Hydrogen sulfide attenuates homocysteine-induced osteoblast dysfunction by inhibiting mitochondrial toxicity. J Cell Physiol 234(10):18602–18614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu K, Beilby J, Dick IM, Devine A, Soós M, Prince RL (2009) The effects of homocysteine and MTHFR genotype on hip bone loss and fracture risk in elderly women. Osteoporos Int 20(7):1183–1191

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by projects: DST-SERB (EMR/2016/007158), Govt. of India, Intramural project from All India Institute of Medical Sciences (AIIMS), New Delhi-India (A-596), and AIIMS-IITD (AI-15) collaborative project sanctioned to RKS. AB, LS, BV, and RKS acknowledge the Department of Biotechnology, AIIMS, New Delhi-India for providing infrastructural facilities. AB thanks DST SERB and LS thanks UGC for research fellowships. Figure are created with the help of https://smart.servier.com.

Author Contributions

RKS contributed in conceptualization and writing of the manuscript. AB and LS participated in writing and editing of the review. BV provided valuable inputs in the preparation of the manuscript. AB created the illustrations.

Conflicts of Interest

The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rupesh K. Srivastava .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhardwaj, A., Sapra, L., Verma, B., Srivastava, R.K. (2022). Homocysteine and Bone Health. In: Dubey, G.P., Misra, K., Kesharwani, R.K., Ojha, R.P. (eds) Homocysteine Metabolism in Health and Disease. Springer, Singapore. https://doi.org/10.1007/978-981-16-6867-8_4

Download citation

Publish with us

Policies and ethics