Skip to main content

Reactive Oxygen Species (ROS): An Introduction

  • Chapter
  • First Online:
Reactive Oxygen Species in Plants

Abstract

Reactive oxygen species (ROS) are highly reactive metabolites of oxygen derived in living organisms as a by-product of aerobic activities. ROS is a collective term for a plethora of oxygen-based radicals and non-radicals, generated at various organelles, in particular, chloroplast, mitochondria, plasma membrane, apoplast, cell wall, peroxisomes, cytosol, and endoplasmic reticulum. Production of ROS in plant cell is mediated through a number of cellular pathways and activities of enzymes. Most of the ROS formed are short-lived entities and therefore display their effects in close proximity to the site of production. Nevertheless, certain ROS can travel longer distances and show their impact at other locations in the cell as well. Due to reactive characteristics, ROS demonstrate a high damaging affinity toward biomolecules including lipid, proteins, carbohydrates, and nucleic acids, resulting in cellular damage and even death under severe conditions. Over-production of ROS has been evidently found toxic for living cells; however, their accumulation below damaging level has been recently viewed as boon for plant growth and development. Low concentration of ROS in plant cell can mediate signaling pathways which facilitate tolerance against an array of environmental stress. Therefore, ROS are often known as dual-edged swords. In plant cell, the level of ROS is checked through the recruitment of diverse enzymatic and non-enzymatic antioxidants such as superoxide peroxidase, catalase, peroxidase, carotenoids, ascorbic acid, tocopherols, and many others. Efficient functioning of antioxidant machinery support plants to withstand and perform well under stress conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad P, Jaleel CA, Salem MA, Nabi G, Sharma S (2010) Roles of enzymatic and nonenzymatic antioxidants in plants during abiotic stress. Crit Rev Biotechnol 30(3):161–175

    Article  CAS  PubMed  Google Scholar 

  • Anjum NA, Sofo A, Scopa A, Roychoudhury A, Gill SS, Iqbal M, Lukatkin AS, Pereira E, Duarte AC, Ahmad I (2015) Lipids and proteins—major targets of oxidative modifications in abiotic stressed plants. Environ Sci Pollut Res 22(6):4099–4121

    Article  CAS  Google Scholar 

  • Anjum NA, Sharma P, Gill SS, Hasanuzzaman M, Khan EA, Kachhap K, Mohamed AA, Thangavel P, Devi GD, Vasudhevan P, Sofo A, Khan NA, Misra AN, Lukatkin AS, Singh HP, Pereira E, Tuteja N (2016) Catalase and ascorbate peroxidase—representative H 2 O 2-detoxifying heme enzymes in plants. Environ Sci Pollut Res 23(19):19002–19029

    Article  CAS  Google Scholar 

  • Ansari MI, Jalil SU, Ansari SA, Hasanuzzaman M (2021) GABA shunt: a key-player in mitigation of ROS during stress. Plant Growth Regul 94:1–19

    Article  Google Scholar 

  • Bayr H (2005) Reactive oxygen species. Crit Care Med 33(12):S498–S501

    Article  Google Scholar 

  • Bhuyan MB, Hasanuzzaman M, Parvin K, Mohsin SM, Al Mahmud J, Nahar K, Fujita M (2020) Nitric oxide and hydrogen sulfide: two intimate collaborators regulating plant defense against abiotic stress. Plant Growth Regul 90(3):409–424. https://doi.org/10.1007/s10725-020-00594-4

    Article  CAS  Google Scholar 

  • Bulgari R, Franzoni G, Ferrante A (2019) Biostimulants application in horticultural crops under abiotic stress conditions. Agronomy 9(6):306. https://doi.org/10.3390/agronomy9060306

    Article  CAS  Google Scholar 

  • Chapman JM, Muhlemann JK, Gayomba SR, Muday GK (2019) RBOH-dependent ROS synthesis and ROS scavenging by plant specialized metabolites to modulate plant development and stress responses. Chem Res Toxicol 32(3):370–396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen S, Yin C, Strasser RJ, Yang C, Qiang S (2012) Reactive oxygen species from chloroplasts contribute to 3-acetyl-5-isopropyltetramic acid-induced leaf necrosis of Arabidopsis thaliana. Plant Physiol Biochem 52:38–51

    Article  CAS  PubMed  Google Scholar 

  • Chen N, Teng XL, Xiao XG (2017) Subcellular localization of a plant catalase-phenol oxidase, AcCATPO, from Amaranthus and identification of a non-canonical peroxisome targeting signal. Front Plant Sci 8:1345. https://doi.org/10.3389/fpls.2017.01345

    Article  PubMed  PubMed Central  Google Scholar 

  • Choudhary A, Kumar A, Kaur N (2020) ROS and oxidative burst: roots in plant development. Plant Divers 42(1):33–43

    Article  PubMed  Google Scholar 

  • Choudhury FK, Rivero RM, Blumwald E, Mittler R (2017) Reactive oxygen species, abiotic stress and stress combination. Plant J 90(5):856–867

    Article  CAS  PubMed  Google Scholar 

  • Corpas FJ, Barroso JB (2014) Peroxynitrite (ONOO−) is endogenously produced in Arabidopsis peroxisomes and is overproduced under cadmium stress. Ann Bot 113(1):87–96

    Article  CAS  PubMed  Google Scholar 

  • Corpas FJ, Barroso JB, del Rı́o, L. A. (2001) Peroxisomes as a source of reactive oxygen species and nitric oxide signal molecules in plant cells. Trends Plant Sci 6(4):145–150

    Article  CAS  PubMed  Google Scholar 

  • Cruz DCM (2008) Drought stress and reactive oxygen species: production, scavenging and signaling. Plant Signal Behav 3(3):156–165. https://doi.org/10.4161/psb.3.3.5536

    Article  Google Scholar 

  • Dar MI, Naikoo MI, Khan FA, Rehman F, Green ID, Naushin F, Ansari AA (2017) An introduction to reactive oxygen species metabolism under changing climate in plants. In: Reactive oxygen species and antioxidant systems in plants: role and regulation under abiotic stress. Springer, Singapore, pp 25–52

    Google Scholar 

  • Das K, Roychoudhury A (2014) Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front Environ Sci 2:53. https://doi.org/10.3389/fenvs.2014.00053

    Article  Google Scholar 

  • De Grey AD (2002) HO2: the forgotten radical. DNA Cell Biol 21(4):251–257

    Article  PubMed  Google Scholar 

  • Del Río LA, Lopez-Huertas E (2016) ROS generation in peroxisomes and its role in cell signaling. Plant Cell Physiol 57(7):1364–1376

    PubMed  Google Scholar 

  • Dikilitas M, Simsek E, Roychoudhury A (2020) Modulation of abiotic stress tolerance through hydrogen peroxide. In: Roychoudhury A, Tripathi DK (eds) Protective chemical agents in the amelioration of plant abiotic stress: biochemical and molecular perspectives. Wiley, Newark, pp 147–173

    Chapter  Google Scholar 

  • Ding S, Li M, Gong H, Zhu Q, Shi G, Zhu A (2020) Sensitive and selective measurement of hydroxyl radicals at subcellular level with tungsten nanoelectrodes. Anal Chem 92(3):2543–2549

    Article  CAS  PubMed  Google Scholar 

  • Dmitrieva VA, Tyutereva EV, Voitsekhovskaja OV (2020) Singlet oxygen in plants: generation, detection, and signaling roles. Int J Mol Sci 21(9):3237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dogra V, Kim C (2020) Singlet oxygen metabolism: from genesis to signaling. Front Plant Sci 10:1640

    Article  PubMed  PubMed Central  Google Scholar 

  • Dumont S, Rivoal J (2019) Consequences of oxidative stress on plant glycolytic and respiratory metabolism. Front Plant Sci 10:166. https://doi.org/10.3389/fpls.2019.00166

    Article  PubMed  PubMed Central  Google Scholar 

  • Edwards EA, Rawsthorne S, Mullineaux PM (1990) Subcellular distribution of multiple forms of glutathione reductase in leaves of pea (Pisum sativum L.). Planta 180(2):278–284

    Article  CAS  PubMed  Google Scholar 

  • Farooq MA, Niazi AK, Akhtar J, Farooq M, Souri Z, Karimi N, Rengel Z (2019) Acquiring control: the evolution of ROS-Induced oxidative stress and redox signaling pathways in plant stress responses. Plant Physiol Biochem 141:353–369

    Article  CAS  PubMed  Google Scholar 

  • Fischer BB, Hideg E, Krieger-Liszkay A (2013) Production, detection, and signaling of singlet oxygen in photosynthetic organisms. Antioxid Redox Signal 18(16):2145–2162

    Article  CAS  PubMed  Google Scholar 

  • Florez-Sarasa I, Fernie AR, Gupta KJ (2020) Does the alternative respiratory pathway offer protection against the adverse effects resulting from climate change? J Exp Bot 71(2):465–469

    Article  CAS  PubMed  Google Scholar 

  • Flors C, Fryer MJ, Waring J, Reeder B, Bechtold U, Mullineaux PM, Nonell S, Wilson MT, Baker NR (2006) Imaging the production of singlet oxygen in vivo using a new fluorescent sensor, Singlet Oxygen Sensor Green®. J Exp Bot 57(8):1725–1734

    Article  CAS  PubMed  Google Scholar 

  • Foyer CH, Shigeoka S (2011) Understanding oxidative stress and antioxidant functions to enhance photosynthesis. Plant Physiol 155(1):93–100

    Article  CAS  PubMed  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48(12):909–930

    Article  CAS  PubMed  Google Scholar 

  • Gilroy S, Suzuki N, Miller G, Choi WG, Toyota M, Devireddy AR, Mittler R (2014) A tidal wave of signals: calcium and ROS at the forefront of rapid systemic signaling. Trends Plant Sci 19(10):623–630

    Article  CAS  PubMed  Google Scholar 

  • Halliwell B (2006) Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiol 141(2):312–322. https://doi.org/10.1104/pp.106.077073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamilton CE, Gundel PE, Helander M, Saikkonen K (2012) Endophytic mediation of reactive oxygen species and antioxidant activity in plants: a review. Fungal Divers 54(1):1–10

    Article  Google Scholar 

  • Hasanuzzaman M, Bhuyan MHM, Parvin K, Bhuiyan TF, Anee TI, Nahar K, Hossen MS, Zulfiqar F, Alam MM, Fujita M (2020) Regulation of ROS metabolism in plants under environmental stress: a review of recent experimental evidence. Int J Mol Sci 21(22):8695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayyan M, Hashim MA, AlNashef IM (2016) Superoxide ion: generation and chemical implications. Chem Rev 116(5):3029–3085

    Article  CAS  PubMed  Google Scholar 

  • He M, He CQ, Ding NZ (2018) Abiotic stresses: general defenses of land plants and chances for engineering multi stress tolerance. Front Plant Sci 9:1771. https://doi.org/10.3389/fpls.2018.01771

    Article  PubMed  PubMed Central  Google Scholar 

  • Hideg É, Vitányi B, Kósa A, Solymosi K, Bóka K, Won S, Inoue Y, Ridge RW, Böddi B (2010) Reactive oxygen species from type-I photosensitized reactions contribute to the light-induced wilting of dark-grown pea (Pisum sativum) epicotyls. Physiol Plant 138(4):485–492

    Article  CAS  PubMed  Google Scholar 

  • Hix LM, Lockwood SF, Bertram JS (2004) Bioactive carotenoids: potent antioxidants and regulators of gene expression. Redox Rep 9(4):181–191

    Article  CAS  PubMed  Google Scholar 

  • Hu YQ, Liu S, Yuan HM, Li J, Yan DW, Zhang JF, Lu YT (2010) Functional comparison of catalase genes in the elimination of photorespiratory H2O2 using promoter-and 3′-untranslated region exchange experiments in the Arabidopsis cat2 photorespiratory mutant. Plant Cell Environ 33(10):1656–1670

    Article  CAS  PubMed  Google Scholar 

  • Huang S, Van Aken O, Schwarzlander M, Belt K, Millar AH (2016) The roles of mitochondrial reactive oxygen species in cellular signaling and stress response in plants. Plant Physiol 171(3):1551–1559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hussain HA, Hussain S, Khaliq A, Ashraf U, Anjum SA, Men S, Wang L (2018) Chilling and drought stresses in crop plants: implications, cross talk, and potential management opportunities. Front Plant Sci 9:393. https://doi.org/10.3389/fpls.2018.00393

    Article  PubMed  PubMed Central  Google Scholar 

  • Iqbal MS, Iqbal Z, Hashem A, Al-Arjani ABF, Abd-Allah EF, Jafri A, Ansari SA, Ansari MI (2021) Nigella sativa callus treated with sodium azide exhibit augmented antioxidant activity and DNA damage inhibition. Sci Rep 11(1):1–14

    Article  Google Scholar 

  • Jakob B, Heber U (1996) Photoproduction and detoxification of hydroxyl radicals in chloroplasts and leaves and relation to photoinactivation of photosystems I and II. Plant Cell Physiol 37(5):629–635

    Article  CAS  Google Scholar 

  • Jalil SU, Ansari MI (2020a) Stress implications and crop productivity. In: Plant ecophysiology and adaptation under climate change: mechanisms and perspectives I. Springer, Singapore, pp 73–86

    Google Scholar 

  • Jalil SU, Ansari MI (2020b) Isoprenoids in plant protection against abiotic stress. In: Roychoudhury A, Tripathi DK (eds) Protective chemical agents in the amelioration of plant abiotic stress: biochemical and molecular perspectives. Wiley, Newark, pp 424–436

    Chapter  Google Scholar 

  • Jalil SU, Zahera M, Khan MS, Ansari MI (2019) Biochemical synthesis of gold nanoparticles from leaf protein of Nicotiana tabacum L. cv. xanthi and their physiological, developmental, and ROS scavenging responses on tobacco plant under stress conditions. IET Nanobiotechnol 13(1):23–29

    Article  PubMed  Google Scholar 

  • Janku M, Luhova L, Petrivalsky M (2019) On the origin and fate of reactive oxygen species in plant cell compartments. Antioxidants 8(4):105. https://doi.org/10.3390/antiox8040105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamran M, Parveen A, Ahmar S, Malik Z, Hussain S, Chattha MS, Saleem MH, Adil M, Heidari P, Chen JT (2020) An overview of hazardous impacts of soil salinity in crops, tolerance mechanisms, and amelioration through selenium supplementation. Int J Mol Sci 21(1):148

    Article  CAS  Google Scholar 

  • Kehrer JP, Robertson JD, Smith CV (2010) Free radicals and reactive oxygen species. In: McQueen CA (ed) Comprehensive toxicology, 2nd edn. Elsevier, Oxford, pp 277–307

    Chapter  Google Scholar 

  • Kerchev P, van der Meer T, Sujeeth N, Verlee A, Stevens CV, Van Breusegem F, Gechev T (2020) Molecular priming as an approach to induce tolerance against abiotic and oxidative stresses in crop plants. Biotechnol Adv 40:107503. https://doi.org/10.1016/j.biotechadv.2019.107503

    Article  CAS  PubMed  Google Scholar 

  • Keunen E, Remans T, Bohler S, Vangronsveld J, Cuypers A (2011) Metal-induced oxidative stress and plant mitochondria. Int J Mol Sci 12(10):6894–6918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kohli SK, Khanna K, Bhardwaj R, Abd Allah EF, Ahmad P, Corpas FJ (2019) Assessment of subcellular ROS and NO metabolism in higher plants: multifunctional signaling molecules. Antioxidants 8(12):641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar V, Khare T, Sharma M, Wani SH (2017) ROS-induced signaling and gene expression in crops under salinity stress. In: Khan MIR, Khan NA (eds) Reactive oxygen species and antioxidant systems in plants: role and regulation under abiotic stress. Springer, Singapore, pp 159–184

    Google Scholar 

  • Lin H, Shen Y, Chen D, Lin L, Wilson BC, Li B, Xie S (2013) Feasibility study on quantitative measurements of singlet oxygen generation using singlet oxygen sensor green. J Fluoresc 23(1):41–47

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Yao Y, Hu X, Xing S, Xu L (2015) Cloning and allelic variation of two novel catalase genes (SoCAT-1 and SsCAT-1) in Saccharum officinarum L. and Saccharum spontaneum L. Biotechnol Biotechnol Equip 29(3):431–440. https://doi.org/10.1080/13102818.2015.1018839

    Article  CAS  Google Scholar 

  • Luis A, Corpas FJ, López-Huertas E, Palma JM (2018) Plant superoxide dismutases: function under abiotic stress conditions. In: In antioxidants and antioxidant enzymes in higher plants. Springer, Cham, pp 1–26

    Google Scholar 

  • Ma J, Qiu D, Pang Y, Gao H, Wang X, Qin Y (2020) Diverse roles of tocopherols in response to abiotic and biotic stresses and strategies for genetic biofortification in plants. Mol Breed 40(2):1–15

    Article  CAS  Google Scholar 

  • Martinez C, Montillet JL, Bresson E, Agnel JP, Dai GH, Daniel JF, Geiger JP, Nicole M (1998) Apoplastic peroxidase generates superoxide anions in cells of cotton cotyledons undergoing the hypersensitive reaction to Xanthomonas campestris pv. malvacearum race 18. Mol Plant-Microbe Interact 11(11):1038–1047

    Article  CAS  Google Scholar 

  • Martinez V, Mestre TC, Rubio F, Girones-Vilaplana A, Moreno DA, Mittler R, Rivero RM (2016) Accumulation of flavonols over hydroxycinnamic acids favors oxidative damage protection under abiotic stress. Front Plant Sci 7:838. https://doi.org/10.3389/fpls.2016.00838

    Article  PubMed  PubMed Central  Google Scholar 

  • Mattos LM, Moretti CL (2015) Oxidative stress in plants under drought conditions and the role of different enzymes. Enzym Eng 5:1–6

    Google Scholar 

  • Maurya AK (2020) Oxidative stress in crop plants. In: Hasanuzzaman M (ed) Agronomic crops: stress responses and tolerance. Springer, Singapore, pp 349–380

    Chapter  Google Scholar 

  • Mika A, Minibayeva F, Beckett R, Luthje S (2004) Possible functions of extracellular peroxidases in stress-induced generation and detoxification of active oxygen species. Phytochem Rev 3(1-2):173–193

    Article  CAS  Google Scholar 

  • Miller GAD, Suzuki N, Ciftci-Yilmaz SULTAN, Mittler RON (2010) Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ 33(4):453–467

    Article  CAS  PubMed  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7(9):405–410

    Article  CAS  PubMed  Google Scholar 

  • Mittler R (2017) ROS are good. Trends Plant Sci 22(1):11–19

    Article  CAS  PubMed  Google Scholar 

  • Moan J (1990) On the diffusion length of singlet oxygen in cells and tissues. J Photochem Photobiol B Biol 6(3):343–344

    Article  CAS  Google Scholar 

  • Nimse SB, Pal D (2015) Free radicals, natural antioxidants, and their reaction mechanisms. RSC Adv 5(35):27986–28006

    Article  CAS  Google Scholar 

  • Noctor G, Reichheld JP, Foyer CH (2018) ROS-related redox regulation and signaling in plants. Semin Cell Dev Biol 80:3–12

    Article  CAS  PubMed  Google Scholar 

  • Ortega-Galisteo AP, Rodriguez-Serrano M, Pazmino DM, Gupta DK, Sandalio LM, Romero-Puertas MC (2012) S-Nitrosylated proteins in pea (Pisum sativum L.) leaf peroxisomes: changes under abiotic stress. J Exp Bot 63(5):2089–2103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pandey S, Fartyal D, Agarwal A, Shukla T, James D, Kaul T, Negi YK, Arora S, Reddy MK (2017) Abiotic stress tolerance in plants: myriad roles of ascorbate peroxidase. Front Plant Sci 8:581. https://doi.org/10.3389/fpls.2017.00581

    Article  PubMed  PubMed Central  Google Scholar 

  • Pang CH, Wang BS (2010) Role of ascorbate peroxidase and glutathione reductase in ascorbate–glutathione cycle and stress tolerance in plants. In: Anjum NA, Chan MT, Umar S (eds) Ascorbate-glutathione pathway and stress tolerance in plants. Springer, Dordrecht, pp 91–113

    Chapter  Google Scholar 

  • Petrov V, Hille J, Mueller-Roeber B, Gechev TS (2015) ROS-mediated abiotic stress-induced programmed cell death in plants. Front Plant Sci 6:69. https://doi.org/10.3389/fpls.2015.00069

    Article  PubMed  PubMed Central  Google Scholar 

  • Phaniendra A, Jestadi DB, Periyasamy L (2015) Free radicals: properties, sources, targets, and their implication in various diseases. Indian J Clin Biochem 30(1):11–26

    Article  CAS  PubMed  Google Scholar 

  • Pinto-Marijuan M, Munne-Bosch S (2014) Photo-oxidative stress markers as a measure of abiotic stress-induced leaf senescence: advantages and limitations. J Exp Bot 65(14):3845–3857

    Article  PubMed  Google Scholar 

  • Pnueli L, Liang H, Rozenberg M, Mittler R (2003) Growth suppression, altered stomatal responses, and augmented induction of heat shock proteins in cytosolic ascorbate peroxidase (Apx1)-deficient Arabidopsis plants. Plant J 34(2):187–203

    Article  CAS  PubMed  Google Scholar 

  • Podgorska A, Burian M, Szal B (2017) Extra-cellular but extra-ordinarily important for cells: apoplastic reactive oxygen species metabolism. Front Plant Sci 8:1353. https://doi.org/10.3389/fpls.2017.01353

    Article  PubMed  PubMed Central  Google Scholar 

  • Pospíšil P (2009) Production of reactive oxygen species by photosystem II. Biochim Biophys Acta Bioenerg 1787(10):1151–1160

    Article  Google Scholar 

  • Pospisil P (2016) Production of reactive oxygen species by photosystem II as a response to light and temperature stress. Front Plant Sci 7:1950. https://doi.org/10.3389/fpls.2016.01950

    Article  PubMed  PubMed Central  Google Scholar 

  • Rao AC, Reddy AR (2008) Glutathione reductase: a putative redox regulatory system in plant cells. In: Khan NA, Singh S, Umar S (eds) Sulfur assimilation and abiotic stress in plants. Springer, Berlin, pp 111–147

    Chapter  Google Scholar 

  • Richards SL, Wilkins KA, Swarbreck SM, Anderson AA, Habib N, Smith AG, McAinsh M, Davies JM (2015) The hydroxyl radical in plants: from seed to seed. J Exp Bot 66(1):37–46

    Article  CAS  PubMed  Google Scholar 

  • Romero-Puertas MC, McCarthy I, Sandalio LM, Palma JM, Corpas FJ, Gomez M, Del Rio LA (1999) Cadmium toxicity and oxidative metabolism of pea leaf peroxisomes. Free Radic Res 31(sup1):25–31

    Article  Google Scholar 

  • Romero-Puertas MC, Palma JM, Gómez M, Del Rio LA, Sandalio LM (2002) Cadmium causes the oxidative modification of proteins in pea plants. Plant Cell Environ 25(5):677–686

    Article  CAS  Google Scholar 

  • Roychowdhury R, Khan MH, Choudhury S (2019) Physiological and molecular responses for metalloid stress in rice—a comprehensive overview. In: Hasanuzzaman M, Fujita M, Nahar K, Biswas JK (eds) Advances in rice research for abiotic stress tolerance. Woodhead Publishing, Oxford, pp 341–369

    Chapter  Google Scholar 

  • Sachdev S, Ansari SA, Ansari MI, Fujita M, Hasanuzzaman M (2021) Abiotic stress and reactive oxygen species: generation, signaling, and defense mechanisms. Antioxidants 10(2):277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saed-Moucheshi A, Shekoofa A, Pessarakli M (2014) Reactive oxygen species (ROS) generation and detoxifying in plants. J Plant Nutr 37(10):1573–1585

    Article  CAS  Google Scholar 

  • Saini P, Gani M, Kaur JJ, Godara LC, Singh C, Chauhan SS, Francies RM, Bhardwaj A, Kumar NB, Ghosh MK (2018) Reactive oxygen species (ROS): a way to stress survival in plants. In: Zargar SM, Zargar MY (eds) Abiotic stress-mediated sensing and signaling in plants: an omics perspective. Springer, Singapore, pp 127–153

    Chapter  Google Scholar 

  • Schertl P, Braun HP (2014) Respiratory electron transfer pathways in plant mitochondria. Front Plant Sci 5:163. https://doi.org/10.3389/fpls.2014.00163

    Article  PubMed  PubMed Central  Google Scholar 

  • Schrader M, Fahimi HD (2006) Peroxisomes and oxidative stress. Biochim Biophys Acta Mol Cell Res 1763(12):1755–1766

    Article  CAS  Google Scholar 

  • Sewelam N, Kazan K, Schenk PM (2016) Global plant stress signaling: reactive oxygen species at the cross-road. Front Plant Sci 7:187. https://doi.org/10.3389/fpls.2016.00187

    Article  PubMed  PubMed Central  Google Scholar 

  • Shah K, Chaturvedi V, Gupta S (2019) Climate change and abiotic stress-induced oxidative burst in rice. In: Hasanuzzaman M, Fujita M, Nahar K, Biswas JK (eds) Advances in rice research for abiotic stress tolerance. Woodhead Publishing, Oxford, pp 505–535

    Chapter  Google Scholar 

  • Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot 2012:217037. https://doi.org/10.1155/2012/217037

    Article  CAS  Google Scholar 

  • Shigeoka S, Ishikawa T, Tamoi M, Miyagawa Y, Takeda T, Yabuta Y, Yoshimura K (2002) Regulation and function of ascorbate peroxidase isoenzymes. J Exp Bot 53(372):1305–1319

    Article  CAS  PubMed  Google Scholar 

  • Smirnoff N, Arnaud D (2019) Hydrogen peroxide metabolism and functions in plants. New Phytol 221(3):1197–1214

    Article  CAS  PubMed  Google Scholar 

  • Su T, Wang P, Li H, Zhao Y, Lu Y, Dai P, Ren T, Wang X, Li X, Shao Q, Zhao D, Zhao Y, Ma C (2018) The Arabidopsis catalase triple mutant reveals important roles of catalases and peroxisome-derived signaling in plant development. J Integr Plant Biol 60(7):591–607

    Article  CAS  PubMed  Google Scholar 

  • Suo J, Zhao Q, David L, Chen S, Dai S (2017) Salinity response in chloroplasts: insights from gene characterization. Int J Mol Sci 18(5):1011. https://doi.org/10.3390/ijms18051011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Treml J, Smejkal K (2016) Flavonoids as potent scavengers of hydroxyl radicals. Compr Rev Food Sci Food Saf 15(4):720–738

    Article  CAS  PubMed  Google Scholar 

  • Triantaphylidès C, Havaux M (2009) Singlet oxygen in plants: production, detoxification and signaling. Trends Plant Sci 14(4):219–228

    Article  PubMed  Google Scholar 

  • Triantaphylides C, Krischke M, Hoeberichts FA, Ksas B, Gresser G, Havaux M, Breusegem MH, Mueller MJ (2008) Singlet oxygen is the major reactive oxygen species involved in photooxidative damage to plants. Plant Physiol 148(2):960–968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tripathy BC, Oelmuller R (2012) Reactive oxygen species generation and signaling in plants. Plant Signal Behav 7(12):1621–1633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uarrota VG, Stefen DLV, Leolato LS, Gindri DM, Nerling D (2018) Revisiting carotenoids and their role in plant stress responses: from biosynthesis to plant signaling mechanisms during stress. In: Gupta DK, Palma JM, Corpas FJ (eds) Antioxidants and antioxidant enzymes in higher plants. Springer, Cham, pp 207–232

    Chapter  Google Scholar 

  • Ung L, Pattamatta U, Carnt N, Wilkinson-Berka JL, Liew G, White AJ (2017) Oxidative stress and reactive oxygen species: a review of their role in ocular disease. Clin Sci 131(24):2865–2883

    Article  CAS  Google Scholar 

  • Volkov RA, Panchuk II, Mullineaux PM, Schoffl F (2006) Heat stress-induced H2O2 is required for effective expression of heat shock genes in Arabidopsis. Plant Mol Biol 61(4-5):733–746

    Article  CAS  PubMed  Google Scholar 

  • Voothuluru P, Sharp RE (2013) Apoplastic hydrogen peroxide in the growth zone of the maize primary root under water stress. I. Increased levels are specific to the apical region of growth maintenance. J Exp Bot 64(5):1223–1233

    Article  CAS  PubMed  Google Scholar 

  • Voss I, Sunil B, Scheibe R, Raghavendra AS (2013) Emerging concept for the role of photorespiration as an important part of abiotic stress response. Plant Biol 15(4):713–722

    Article  CAS  PubMed  Google Scholar 

  • Wang F, Chen ZH, Liu X, Colmer TD, Shabala L, Salih A, Zhao M, Shabala S (2017) Revealing the roles of GORK channels and NADPH oxidase in acclimation to hypoxia in Arabidopsis. J Exp Bot 68(12):3191–3204

    CAS  PubMed  Google Scholar 

  • Wongshaya P, Chayjarung P, Tothong C, Pilaisangsuree V, Somboon T, Kongbangkerd A, Limmongkon A (2020) Effect of light and mechanical stress in combination with chemical elicitors on the production of stilbene compounds and defensive responses in peanut hairy root culture. Plant Physiol Biochem 157:93–104

    Article  CAS  PubMed  Google Scholar 

  • Xie X, He Z, Chen N, Tang Z, Wang Q, Cai Y (2019) The roles of environmental factors in regulation of oxidative stress in plant. Biomed Res Int 2019:9732325. https://doi.org/10.1155/2019/9732325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamane K, Taniguchi M, Miyake H (2012) Salinity-induced subcellular accumulation of H2O2 in leaves of rice. Protoplasma 249(2):301–308

    Article  CAS  PubMed  Google Scholar 

  • Yousuf PY, Hakeem KUR, Chandna R, Ahmad P (2012) Role of glutathione reductase in plant abiotic stress. In: Ahmad P, Prasad MNV (eds) Abiotic stress responses in plants. Springer, New York, NY, pp 149–158

    Chapter  Google Scholar 

  • Zafra A, Castro AJ, de Dios Alche J (2018) Identification of novel superoxide dismutase isoenzymes in the olive (Olea europaea L.) pollen. BMC Plant Biol 18(1):114. https://doi.org/10.1186/s12870-018-1328-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zandalinas SI, Balfagón D, Arbona V, Gomez-Cadenas A (2017) Modulation of antioxidant defense system is associated with combined drought and heat stress tolerance in citrus. Front Plant Sci 8:953. https://doi.org/10.3389/fpls.2017.00953

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang M, Smith JAC, Harberd NP, Jiang C (2016) The regulatory roles of ethylene and reactive oxygen species (ROS) in plant salt stress responses. Plant Mol Biol 91(6):651–659

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sachdev, S., Ansari, S.A., Ansari, M.I. (2023). Reactive Oxygen Species (ROS): An Introduction. In: Reactive Oxygen Species in Plants. Springer, Singapore. https://doi.org/10.1007/978-981-19-9884-3_1

Download citation

Publish with us

Policies and ethics