Skip to main content
Log in

Nitrogen fixation by Nodularia spumigena Mertens (Cyanobacteriaceae). 2: Laboratory studies

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The effects of changes in diurnal light patterns, salinity, and phosphorus on nitrogen fixation (as measured by acetylene reduction) by Nodularia spumigena Mertens were examined. As well, the effects of added inorganic nitrogen on growth, nitrogen fixation and heterocyt frequencies, and changes in nitrogen fixation and heterocyst frequencies during the growth cycle of Nodularia in cultures were determined.

The diurnal pattern of nitrogenase activity in Nodularia was primarily light-induced, though dark activity did occur. Nitrogenase activity following a period of darkness exceeded the normal light rate (> 90 compared to 50 nmol · C2H2 reduced · ml−1 · h−1). Nitrogen fixation was reduced by high and very low salinities (5 to 10‰ was the optimum range), and added phosphorus stimulated nitrogenase in P-starved cells. Added nitrogen (ammonium or nitrate) had no effect on the growth of Nodularia, but in short term studies, ammonium completely inhibited nitrogenase activity. Heterocyst frequencies were greatest in the log phase of growth (to 40 per mm). During stationary phase, nitrogenase activity was negligable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahluwalia, A. S. & H. G. Kumar, 1982. Cellular differentiation and nitrogenase activity in the Cyanobacterium Anabaena. Biologia Pl. 24: 136–141.

    Google Scholar 

  • Bottomley, P. J., J. F. Grillo, C. van Baalen & F. R. Tabita, 1979. Synthesis of nitrogenase and heterocysts by Anabaena sp. CA. in the presence of high levels of ammonia. J. Bacteriol. 140: 938–943.

    PubMed  Google Scholar 

  • Camm, E. L. & J. R. Stein, 1974. Some aspects of the nitrogen metabolism of Nodularia spumigena (Cyanophyceae). Can. J. Bot. 52: 719–726.

    Google Scholar 

  • Cox, R. M. & P. Fay, 1969. Special aspects of nitrogen fixation by blue-green algae. Proc. r. Soc. Lond. B. 172: 357–366.

    PubMed  Google Scholar 

  • Dubois, J. D. & L. A. Kaputska, 1981. Osmotic stress effects on the N2 (C2H2) ase activity of aquatic cyanobacteria. Aquat. Bot. 11: 11–20.

    Article  Google Scholar 

  • Eady, R. R. & J. R. Postgate, 1974. Nitrogenase. Nature 249: 805–810.

    Article  PubMed  Google Scholar 

  • Fogg, G. E., 1982. Marine plankton. In N. G. Carr & B. A. Whitton (eds), The Biology of Cyanobacteria. Blackwell Scientific Publications, Oxford: 491–513.

    Google Scholar 

  • Hodgkin, E. P. & P. B. Birch, 1982. Eutrophication of a Western Australian estuary. Oceanol. Acta 1982: 313–318.

    Google Scholar 

  • Horne, A. J., 1977. Nitrogen fixation — a review of this phenomenon as a polluting process. Prog. Wat. Tech. 8: 359–372.

    Google Scholar 

  • Horne, A. J., J. C. Sandusky & C. J. W. Carmigglet, 1979. Nitrogen fixation in Clear Lake, California, 3. Repetative synoptic sampling of the spring Aphanizomenon blooms. Limnol. Oceanogr. 24: 316–328.

    Google Scholar 

  • Hübel, H. & M. Hübel, 1980. Nitrogen fixation during blooms of Nodularia in coastal waters and backwaters of the Arkona Sea (Baltic Sea) in 1974. Int. Revue ges. Hydrobiol. 65: 793–808.

    Google Scholar 

  • Huber, A. L., 1984. Nodularia (Cyanobacteriaceae) akinetes in the sediments of the Peel-Harvey Estuary, Western Australia: Potential inoculum source for Nodularia blooms. Appl. envir. Microbiol. 47: 234–238.

    Google Scholar 

  • Huber, A. L., 1986. Nitrogen fixation by Nodularia spumigena Mertens (Cyanobacteriaceae), 2. Field studies and contributions to the nitrogen budget of the Peel-Harvey Estuary, Western Australia. Hydrobiologia (in press).

  • Huber, A. L. & K. S. Hamel, 1984. Phosphatase activities in relation to phosphorus nutrition in Nodularia spumigena (Cyanobacteriaceae), 2. Laboratory studies. Hydrobiologia 123: 81–88.

    Article  Google Scholar 

  • Lex, M. & W. D. P. Stewart, 1973. Algal nitrogenase, reductant pools and photosystem 1 activity. Biochem. Biophys. Acta, 292: 436–443.

    PubMed  Google Scholar 

  • McCarthy, J. J. & E. J. Carpenter, 1979. Oscillatoria (Trichchodesmium) thiebautii (cyanophyta) in the Central North Atlantic Ocean. J. Phycol. 15: 75–82.

    Article  Google Scholar 

  • Meeks, J. C., K. L. Wycoff, J. S. Chapman & C. S. Enderlin, 1983. Regulation of expression of nitrate and dinitrogen assimilation by Anabaena species. Appl. envir. Microbiol. 45: 1351–1359.

    Google Scholar 

  • Millineaux, P. M., J. R. Gallon & A. E. Chaplin, 1981. Acetylene reduction (nitrogen fixation) by cyanobacteria grown under alternating light-dark cycles. F.E.M.S microbiol. Lett. 10: 245–247.

    Article  Google Scholar 

  • Nordin, R. N., 1974. The biology of Nodularia (Cyanophyceae). Ph.D. Thesis, Dep.Bot., Univ. Br. Colombia, Can., 167 pp.

    Google Scholar 

  • Ohki, K. & Y. Fujita, 1982. Laboratory culture of the pelagic blue-green alga Trichodesmium thiebautii: Conditions for unialgal culture. Mar. Ecol. Prog. Ser. 7: 185–190.

    Google Scholar 

  • Ohmori, M. & A. Hattori, 1972. Effect of nitrate on nitrogen-fixation by the blue-green algae Anabaena cylindrica. Pl. Cell Physiol. 13: 589–599.

    Google Scholar 

  • Oström, B., 1976. Fertilization of the Baltic by nitrogen fixation in the blue-green alga Nodularia spumigena. Remote Sens. Envir. 4: 305–310.

    Article  Google Scholar 

  • Rhee, G-Y., 1982. Effects of environmental factors and their interactions on phytoplankton growth. Adv. Microb. Ecol. 6: 33–74.

    Google Scholar 

  • Rhee, G-Y. & T. C. Lederman, 1983. Effects of nitrogen sources on P-limited growth of Anabaena flos-aquae. J. Phycol. 19: 179–185.

    Article  Google Scholar 

  • Rother, J. A. & P. Fay, 1979. Some physiological-biological characteristics of planktonic blue-green algae during formation in three Salopian meres. Freshwat. Biol. 9: 369–379.

    Google Scholar 

  • Smith, R. V., R. J. Noy & M. C. W. Evans, 1971. Physiological electron donor systems to the nitrogenase of the blue-green alga Anabaena cylindrica. Biochim. Biophys. Acta 253: 104–109.

    PubMed  Google Scholar 

  • Stewart, W. D. P. & G. Alexander, 1971. Phosphorus availability and nitrogenase activity in aquatic blue-green algae. Freshwat. Biol. 1: 389–404.

    Google Scholar 

  • Strickland, J. D. H. & T. R. Parsons, 1968. A practical handbook of seawater analysis. Bull. Fish Res. Bd Can. 167: 311 pp.

  • Tel-or, E., 1980. Response of N2-fixing cyanobacteria to salt. Appl. envir. Microbiol. 40: 689–693.

    Google Scholar 

  • Thomas, J. & K. A. V. David, 1972. Site of nitrogenase activity in the blue green alga Anabaena sp. Nat. New Biol. 238: 219–221.

    PubMed  Google Scholar 

  • Ward, A. K. & R. G. Wetzel, 1975. Sodium: Some effects on blue-green algal growth. J. Phycol. 4: 357–363.

    Google Scholar 

  • Warr, S. R. C., R. H. Reed & W. D. P. Stewart, 1984. Physiological responses of Nodularia harveyana to osmotic stress. Mar. Biol. 79: 21–26.

    Article  Google Scholar 

  • Wolk, C. P., 1982. Heterocysts. In N. G. Carr & B. A. Whitton (eds), The Biology of Cyanobacteria. Blackwell Scientific Publications, Oxford: 359–386.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huber, A.L. Nitrogen fixation by Nodularia spumigena Mertens (Cyanobacteriaceae). 2: Laboratory studies. Hydrobiologia 133, 193–202 (1986). https://doi.org/10.1007/BF00005590

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00005590

Keywords

Navigation