Skip to main content
Log in

Effects of different molecular weight fractions of dissolved organic matter on the growth of bacteria, algae and protozoa from a highly humic lake

  • DOM as a system regulator
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Effects of different molecular size fractions (< 1000 MW, < 10 000 MW, < 100 000 MW and <0.1 µm) of dissolved organic matter (DOM) on the growth of bacteria, algae and protozoa from a highly humic lake were investigated. DOM from catchment drainage water as well as from the lake consisted mostly (59–63%) of high molecular weight (HMW) compounds (> 10 000 MW). With excess inorganic nutrients, the growth rate and yield of bacteria were almost identical in all size fractions. However, in < 1000 MW fractions and with glucose added, a longer lag phase occurred. Without added nutrients both the growth rates and biomasses of bacteria decreased towards the smaller size fractions and the percentage of dissolved organic carbon (DOC) used during the experiment and the growth efficiency of bacteria were lower than with excess nutrients. The growth efficiency of bacteria was estimated to vary between 3–66% in different MW fractions, largely depending on the nutrient concentrations, but the highest growth efficiencies were observed in HMW fractions and with glucose. The growth of algae was clearly lowest in the < 1000 MW fraction. In dim light no net growth of algae could be found. In contrast, added nutrients substantially enhanced algal growth and in deionized water with glucose, algae achieved almost the same growth rate and biomass as in higher MW fractions of DOM. The results suggested that bacteria and some algae were favoured by DOM, but protozoans seemed to benefit only indirectly, through bacterial grazing. The utilization of DOM by bacteria and algae was strongly affected by the availability of phosphorus and nitrogen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen, H. L., 1976. Dissolved organic matter in lakewater: Characteristics of molecular weight size-fractions and ecological implications. Oikos 27: 64–70.

    CAS  Google Scholar 

  • Arvola, L. & T. Tulonen. Enhancement by dissolved organic matter of the growth of laboratory strains of bacteria and algae and the microorganisms of a highly humic lake. Manuscript.

  • Arvola, L., K. Salonen & M. Rask, 1990. Chemical budgets for a small dystrophic lake in southern Finland. Limnologica (Berlin) 20: 243–251.

    CAS  Google Scholar 

  • Benner, R., J. Jay, E. K'nees & R. E. Hodson, 1988. Carbon conversion efficiency for bacterial growth on lignocellulose: Implications for detritus-based food webs. Limnol. Oceanogr. 33: 1514–1526.

    CAS  Google Scholar 

  • Bennett, M. E. & J. E. Hobbie, 1972. The uptake of glucose by Chlamydomonas sp. J. Phycol. 8: 392–398.

    Article  CAS  Google Scholar 

  • Bergström, I., A. Heinänen & K. Salonen, 1986. Comparison of acridine organge, acriflavine, and bisbenzimide stains for enumeration of bacteria in clear and humic waters. Appl. envir. Microbiol. 51: 664–667.

    Google Scholar 

  • Børsheim, K. Y. & G. Bratbak, 1987. Cell volume to cell carbon conversion factors for a bacteriovorous Monas sp. enriched from sea water. Mar. Ecol. Prog. Ser. 36: 171–175.

    Google Scholar 

  • Bratbak, G. & I. Dundas, 1984. Bacterial dry matter content and biomass estimations. Appl. envir. Microbiol. 48: 755–757.

    CAS  Google Scholar 

  • Carlson, D. J., M. L. Brann, T. H. Mague & L. M. Mayer, 1985. Molecular weight distribution of dissolved organic materials in seawater determined by ultrafiltration: A reexamination. Mar. Chem. 16: 155–171.

    Article  CAS  Google Scholar 

  • CCAP, 1988. Culture collection of algae and protozoa. Catalogue of strains. Natural Environmental Research Council, 164 pp.

  • Chen, Y., S. U. Khan & M. Schnitzer, 1978. Ultraviolet irradiation of dilute fulvic acid solutions. Soil Sci. Soc. Amer. J. 42: 292–296.

    Article  CAS  Google Scholar 

  • Chróst, R. J., 1989. Characterization and significance of β-glucosidase activity in lake water. Limnol. Oceanogr. 34: 660–672.

    Google Scholar 

  • Chróst, R. J., U. Münster, H. Rai, D. Albrecht, P. K. Witzel & J. Overbeck, 1989. Photosynthetic production and exoenzymatic degradation of organic matter in euphotic zone of an eutrophic lake. J. Plankton Res. 11: 223–242.

    Google Scholar 

  • Coffin, R. B., 1989. Bacterial uptake of dissolved free and combined amino acids in estuarine waters. Limnol. Oceanogr. 34: 531–542.

    CAS  Google Scholar 

  • De Haan, H., 1974. Effects of a fulvic acid fraction on the growth of a Pseudomonas from Tjeukemeer (The Netherlands). Freshwat. Biol. 4: 301–310.

    Article  Google Scholar 

  • De Haan, H., 1979. Effect of benzoate on the microbial decomposition of fulvic acids in Tjeukemeer (The Netherlands). Limnol. Oceanogr. 22: 38–44.

    Google Scholar 

  • De Haan, H., R. I. Jones & K. Salonen, 1987. Does ionic strength affect the configuration of aquatic humic substances, as indicated by gel filtration? Freshwat. Biol. 17: 453–459.

    Article  Google Scholar 

  • Geller, A., 1983. Degradability of dissolved organic lake water compounds in cultures of natural bacterial communities. Arch. Hydrobiol. 99: 60–79.

    CAS  Google Scholar 

  • Geller, A., 1985. Degradation and formation of refractory DOM by bacteria during simultaneous growth on labile substrates and persistent lake water constituents. Schweiz. Z. Hydrol. 47: 27–44.

    CAS  Google Scholar 

  • Gjessing, E. T., 1970. Reduction of aquatic humus in streams. Vatten 1: 14–23.

    Google Scholar 

  • Gjessing, E. T., 1976. Physical and chemical characteristics of aquatic humus. Ann. Arbor Sci. Publ., Inc., Ann Arbor (Michigan): 1–20.

    Google Scholar 

  • Goldman, J. C., D. A. Caron & M. R. Dennett, 1987. Regulation of gross growth efficiency and ammonium regeneration in bacteria by substrate C:N ratio. Limnol. Oceanogr. 32: 1239–1252.

    Article  CAS  Google Scholar 

  • Hessen, D. O., 1985. The relation between bacterial carbon and dissolved humic compounds in oligotrophic lakes. FEMS Microbiol. Ecol. 31: 215–223.

    Article  CAS  Google Scholar 

  • Il'ln, N. P. & D. S. Orlov, 1973. Photochemical destruction of humic acids. Soviet Soil Sci. 13: 75–83.

    Google Scholar 

  • Jones, R. I. & K. Salonen, 1985. The importance of bacterial utilization of released phytoplankton photosynthate in two humic lakes in southern Finland. Holarct. Ecol. 8: 133–140.

    Google Scholar 

  • Jones, R. I., K. Salonen & H. De Haan, 1988. Phosphorus transformations in the epilimnion of humic lakes: abiotic interactions between dissolved humic materials and phosphate. Freshwat. Biol. 19: 357–369.

    Article  CAS  Google Scholar 

  • Jørgensen, S. E., 1986. Fundamentals of ecological modelling. Elsevier.

  • Kaplan, L. A. & T. L. Bott, 1983. Microbial heterotrophic utilization of dissolved organic matter in a piedmont stream. Freshwat. Biol. 13: 363–377.

    Article  Google Scholar 

  • Kieber, R. J., X. Zhou & K. Mopper, 1990. Formation of carbonyl compounds from UV-induced photodegradation of humic substances in natural waters: Fate or riverine carbon in the sea. Limnol. Oceanogr. 35: 1503–1515.

    CAS  Google Scholar 

  • Lee, S. & J. A. Fuhrman, 1987. Relationships between biovolume and biomass of naturally derived marine bacterioplankton. Appl. envir. Microbiol. 53: 1298–1303.

    CAS  Google Scholar 

  • Lytle, C. R. & E. M. Perdue, 1981. Free, proteinaceous, and humic-bound amino acids in river water containing high concentrations of aquatic humus. Envir. Sci. Technol. 15: 224–228.

    Article  CAS  Google Scholar 

  • Meyer, J. L., R. T. Edwards & R. Risley, 1987. Bacterial growth on dissolved organic matter from a blackwater river. Microb. Ecol. 13: 13–29.

    Article  CAS  Google Scholar 

  • Münster, U., 1985. Investigations about structure, distribution and dynamics of different organic substancies in the DOM of lake Plu see. Arch. Hydrobiol. Suppl. 70: 429–480.

    Google Scholar 

  • Münster, U., 1991. Extracellular enzyme activity in eutrophic and polyhumic lakes. In: R. J. Chróst (ed.), Microbial enzymes in aquatic environments, Brock/Springer Series, New York. (in Press).

  • Münster, U. & R. J. Chróst, 1990. Origin, composition, and microbial utilization of dissolved organic matter. In: J. Overbeck & R. J. Chróst (eds.), Aquatic microbial ecology, Brock/Springer Series, New York. pp. 8–46.

  • Münster, U., P. Einiö & J. Nurminen, 1989. Evaluation of the measurements of extracellular enzyme activities in a polyhumic lake by means of studies with 4-methyl-umbelliferyl-substrates. Arch. Hydrobiol. 115: 321–337.

    Google Scholar 

  • Ogura, N., 1975. Further studies on decomposition of dissolved organic matter in coastal seawater. Mar. Biol. 31: 101–111.

    Article  CAS  Google Scholar 

  • Rocha, O. & A. Duncan, 1985. The relationship between cell carbon and cell volume in freshwater algal species used in zooplankton studies. J. Plankton Res. 7: 279–294.

    Google Scholar 

  • Ryhänen, R., 1968. Die Bedeutung der Humussubstanzen im Stoffhaushalt der Gewässer Finnlands. Mitt. int. Ver. Limnol. 14: 168–178.

    Google Scholar 

  • Salonen, K., 1979. A versatile method for the rapid and accurate determination of carbon by high temperature combustion. Limnol. Oceanogr. 24: 177–183.

    CAS  Google Scholar 

  • Salonen, K., 1981. The ecosystem of the oligotrophic Lake Pääjarvi. 2. Bacterioplankton. Verh. int. Ver. Limnol. 21: 448–453.

    Google Scholar 

  • Salonen, K. & L. Arvola, 1988. A radiotracer study of zooplankton grazing in two small humic lakes. Verh. int. Ver. Limnol. 23: 462–469.

    Google Scholar 

  • Salonen, K. & S. Jokinen, 1988. Flagellate grazing on bacteria in a small dystrophic lake. Hydrobiologia 161: 203–209.

    Article  Google Scholar 

  • Salonen, K., K. Kononen & L. Arvola, 1983. Respiration of plankton in two small, polyhumic lakes. Hydrobiologia 101: 65–70.

    Article  Google Scholar 

  • Salonen, K. & T. Tulonen, 1990. Photochemical and biological transformation of dissolved humic substances (Abstract). Verh. int. Ver. Limnol. 24: 294.

    Google Scholar 

  • Sederholm, H., A. Mauranen & L. Montonen, 1973. Some observations on the microbial degradation of humous substances in water. Verh. int. Ver. Limnol. 18: 1301–1305.

    Google Scholar 

  • Sherr, E. B., 1988. Direct use of high molecular weight polysaccharide by heterotrophic flagellates. Nature 335: 348–351.

    Article  CAS  Google Scholar 

  • Steinberg, C. & U. Münster, 1985. Geochemistry and ecological role of humic substances in lake water. In: Aiken, G. R., D. M. McKnight, R. L. Wershaw & P. MacCarthy (Eds.): Humic substances in soil, sediment, and water. Geochemistry, isolation and characterization. J. Wiley & Sons, P. 105–145.

  • Stevenson, F. J., 1982. Humus chemistry. John Wiley & Sons, New York.

    Google Scholar 

  • Stewart, A. J. & R. G. Wetzel, 1981. Dissolved humic materials: photodegradation, sediment effects and reactivity with phosphate and calcium carbonate precipitation. Arch. Hydrobiol. 92: 265–286.

    CAS  Google Scholar 

  • Stockner, J. G., M. E. Klut & W. P. Cochlan, 1989. Leaky filters: a warning to aquatic ecologist. Can. J. Fish. aquat. Sci. 47: 16–23.

    Article  Google Scholar 

  • Strome, D. J. & M. C. Miller, 1978. Photolytic changes in dissolved humic substances. Verh. int. Ver. Limnol. 20: 1248–1254.

    Google Scholar 

  • Thurman, E. M., 1985. Organic geochemistry of natural waters. Mertinus Nijhoff/Dr. W. Junk.

  • Tranvik, L. J., 1988. Availability of dissolved organic carbon for planktonic bacteria in oligotrophic lakes of differing humic content. Microb. Ecol. 16: 311–322.

    Article  CAS  Google Scholar 

  • Tranvik, L. J., 1989. Bacterioplankton growth, grazing mortality and quantitative relationship to primary production in a humic and a clearwater lake. J. Plankton Res. 11: 985–1000.

    Google Scholar 

  • Tranvik, L. J., 1990. Bacterioplankton growth on fractions of dissolved organic carbon of different molecular weights from humic and clear waters. Appl. envir. Microbiol. 56: 1672–1677.

    CAS  Google Scholar 

  • Tranvik, L. J. & M. G. Höfle, 1987. Bacterial growth in mixed cultures on dissolved organic carbon from humic and clear waters. Appl. envir. Microbiol. 53: 482–488.

    CAS  Google Scholar 

  • Tranvik, L. J. & J. McN. Sieburth, 1989. Effects of flocculated humic matter on free and attached pelagic microorganisms. Limnol. Oceanogr. 34: 688–699.

    CAS  Google Scholar 

  • Utermöhl, H., 1958. Zur Vervollkommung der quantitativen Phytoplanktonmethodik. Mitt. int. Ver. Limnol. 9: 1–38.

    Google Scholar 

  • Vartiainen, T., A. Liimatainen & P. Kauranen, 1987. The use of TSK size exclusion columns in determination of the quality and quantity of humus in raw waters and drinking waters. Sci. Tot. Envir. 62: 75–84.

    Article  CAS  Google Scholar 

  • Visser, S. A., 1985. Effect of humic acids on numbers and activities of micro-organisms within physiological groups. Org. Geochem. 8: 81–85.

    Article  CAS  Google Scholar 

  • Ward, A. K. & R. G. Wetzel, 1984. Molecular weight fractionation of dissolved organic nitrogen and carbon compounds from two lakes of differing trophic status. Arch. Hydrobiol. 101: 481–488.

    CAS  Google Scholar 

  • Wetzel, R. G., 1983. Limnology, 2nd. edn. W.B. Saunders Co., Philadelphia.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tulonen, T., Salonen, K. & Arvola, L. Effects of different molecular weight fractions of dissolved organic matter on the growth of bacteria, algae and protozoa from a highly humic lake. Hydrobiologia 229, 239–252 (1992). https://doi.org/10.1007/BF00007003

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00007003

Key words

Navigation