Skip to main content
Log in

Metazoans from a sandy aquifer: dynamics across a physically and chemically heterogeneous groundwater system

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

We investigated the relationship between groundwater metazoans and their physical and chemical environment in a shallow Atlantic Coastal Plain aquifer adjacent to the Chesapeake Bay, Maryland, USA. Average abundance of the groundwater organisms over a 1 % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSGaaeaaca% aIXaaabaGaaGOmaaaaaaa!3776!\[{\raise0.7ex\hbox{$1$} \!\mathord{\left/ {\vphantom {1 2}}\right.\kern-\nulldelimiterspace}\!\lower0.7ex\hbox{$2$}}\] year period were large (% MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa0aaaeaaca% WG4baaaaaa!36FB!\[\overline x \] = 471−1; range = 0–10001−1) and included a wide range of taxa (nematodes, rotifers, copepods, oligochaetes, and others). Highest meiofaunal abundances occurred in the summer and fall with considerable variation across a study site that spanned hundreds of meters. We found that over 70% of the variability in the abundance of total meiofauna at Wye Island could be explained by date, sampling location, and conductivity. Additional physical and chemical factors (e.g., dissolved oxygen, nitrate, dissolved organic carbon) which were significantly related to faunal abundances, differed among taxa. Nematode abundances were negatively related to nitrate concentrations. Copepod and oligochaete abundances were highest at intermediate pH values (4–6). Copepods also occurred in higher abundances at higher conductivity (> 0.25 dS m −1). Rotifers were most abundant at higher oxygen values (> 6 mg l−1). The high faunal abundances found in this sandy aquifer, and the degree to which such habitats are understudied (especially in North America), suggest a great need for additional research to elucidate factors that control faunal dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Belsley, D. A., E. Kuh & R. E. Welsch, 1980. Regression diagnostics: identifying influential data and sources of collinearity. Wiley, New York, 292 pp.

    Google Scholar 

  • Bērzinš, B. & B. Pejler, 1989. Rotifer occurrence in relation to oxygen content. Hydrobiologia 183: 165–172.

    Article  Google Scholar 

  • Botosaneanu, L., 1986. Stygofauna mundi. A faunistic, distributional and ecological synthesis of the world fauna inhabiting subterranean waters (including the marine interstitial). Leiden — E. J. Brill/Dr W. Buckneys, The Netherlands, 740 pp.

    Google Scholar 

  • Bott, T. L. & L. A. Kaplan, 1989. Densities of benthic protozoa and nematodes in a Piedmont stream. J. N. Am. Benthol. Soc. 8: 187–197.

    Article  Google Scholar 

  • Coull, B. C., 1988. Ecology of marine meiofauna. In R. P. Higgins & H. Thiel (eds), Introduction to the study of meiofauna. Smithsonian Institution Press, Washington D.C., 488 pp.

    Google Scholar 

  • Cruezé des Châtellier M. & M.-J. Dole-Olivier, 1991. Limites d'utilisation du sondage de type Bou-Rouch pour la capture de la faune interstitielle. (I) traçage chique au chlorure de sodium. C. r. Acad. Sci., Paris 312: 671–676.

    Google Scholar 

  • Danielopol, D. L., 1976. The distribution of the fauna in the interstitial habitats of riverine sediments of the Danube and the Piesting (Austria). Int. J. Speol. 8: 23–51.

    Google Scholar 

  • Danielopol, D. L., 1984. Ecological investigations on the alluvial sediments of the Danube in the Vienna area — a phreatobiological project. Verh. int. Ver. Limnol. 22: 1755–1761.

    Google Scholar 

  • Danielopol, D. L., 1989. Groundwater fauna associated with riverine aquifers. J. N. Am. Benthol. Soc. 8: 18–35.

    Article  Google Scholar 

  • Danielopol, D. L. & R. Rouch, 1991. L'adaptation des organismes au milieu aquatique souterrain. Réflexions sur l'apport des recherches écologiques récentes. Stygologia 3: 252–263.

    Google Scholar 

  • Danielopol, D. L., J. Dreher, A. Gunatilaka, M. Kaiser, R. Niederreiter, P. Pospisil, M. Creuze des Chatelliers & A. Richter, 1992. Ecology of organisms living in a hypoxic groundwater environment at Vienna (Austria); methodological questions and preliminary results. In J. A. Stanford & J. J. Simons (eds), Proceedings of the First International Conference on Ground Water Ecology. American Water Resources Association, Bethesda, Maryland: 79–90.

    Google Scholar 

  • Evans, W. A., 1982. Abundances of micrometazoans in three sandy beachers in the island area of western Lake Erie. Ohio J. Sci. 82: 246–251.

    Google Scholar 

  • Fetter, C. W., 1988. Applied Hydrogeology. 2nd edition. Merrill Publishing Co., Columbus, 488 pp.

    Google Scholar 

  • Findlay, S. E. B. & T. L. Arsuffi, 1989. Microbial growth and detritus transformations during decomposition of leaf litter in a stream. Freshwat. Biol. 21: 261–269.

    Article  Google Scholar 

  • Freeze, R. A. & J. A. Cherry, 1979. Groundwater. Englewood Cliffs/Prentice Hall, New Jersey, 604 pp.

    Google Scholar 

  • Gibert, J., M. J. Dole-Olivier, P. Marmonier & P. Vervier, 1990. Surface water/groundwater ecotones. In R. J. Naiman & H. Décamps (eds), The ecology and management of aquatic-terrestrial ecotones. Man d and the Biosphere Series, Volume 4, UNESCO, Paris, and The Parthenonon Publishing Group, Park Ridge, New Jersey, 316 pp.

    Google Scholar 

  • Hakenkamp, C. C., 1991. Community dynamics of groundwater meiofauna and response to nutrient enrichment. Masters Thesis. University of Maryland, 62 pp.

  • Hakenkamp, C. C. & M. A. Palmer, 1992. Problems associated with quantitative sampling of groundwater invertebrates. Pages 101–110 in Stanford, J. A. and J. J. Simons (eds), Proceedings of the First International Conference on Ground Water Ecology. American Water Resources Association, Bethesda, Maryland, 420 pp.

    Google Scholar 

  • Hakenkamp, C. C., H. M. Valett & A. J. Boulton, 1993. Perspectives on integrating hydrology and biology in studies of the hyporheic zone: Concluding remarks. J. N. Am. Benthol. Soc. 12: 94–99.

    Article  Google Scholar 

  • Hendricks, S. P. & D. S. White, 1991. Physicochemical patterns within a hyporheic zone of a northern Michigan river, with comments on surface water patterns. Can. J. Fish. aquat. Sci. 48: 1645–1654.

    Article  CAS  Google Scholar 

  • Holsinger, J. R. & G. Longley, 1980. The subterranean amphipod crustacean fauna of an artesian well in Texas. Smithson. Contr. Zool., No. 308. Smithsonian Institution Press, Washington D.C., 62 pp.

    Google Scholar 

  • Husmann S., 1971. Ecological studies on freshwater meiobenthon in layers of sand and gravel. Proceedings of the First International Conference on Meiofauna. Smithson. Contr. Zool. 76: 161–170.

    Google Scholar 

  • Hynes, H. B. N., 1983. Groundwater and stream ecology. Hydrobiologia 100: 93–99.

    Article  Google Scholar 

  • James, B. R., B. B. Bagley & P. H. Gallagher, 1991. Riparian zone vegetation effects on nitrate concentrations in shallow groundwater. Proceedings of the Chesapeake Bay Research Conference, Baltimore, Maryland. Dec. 4–6, 1990. Chesapeake Research Consortium, Solomons, Maryland.

    Google Scholar 

  • Kaplan, L. A., R. A. Larson & T. L. Bott, 1980. Patterns of dissolved organic carbon in transport. Limnol. Oceanogr. 25: 1034–1043.

    Google Scholar 

  • Kirk, R. E., 1982. Experimental design: procedures for the behavioral sciences. 2nd edition., Brooks/Cole Publishing, Belmont, California, 577 pp.

    Google Scholar 

  • Longley, G., 1981. The Edwards aquifer: Earth's most diverse groundwater ecosystem? Intern. J. Speol. 11: 123–128.

    Google Scholar 

  • Lopez, G. R., 1988. Comparative ecology of the macrofauna of freshwater and marine muds. Limnol. Oceanogr. 33: 946–962.

    Google Scholar 

  • Meyer, J. L., 1990. A blackwater perspective on riverine ecosystems. Bioscience 40: 643–641.

    Article  Google Scholar 

  • Meyer, J. L., W. H. McDowell, T. L. Bott, J. W. Elwood, C. Ishizaki, J. M. Melach, B. L. Peckarsky, B. J. Peterson & P. A. Rublee, 1988. Elemental dynamics in streams. J. N. Am. Benthol. Soc. 7: 410–432.

    Article  Google Scholar 

  • Montagna, P. A., B. C. Coull, T. L. Herring & B. W. Dudley, 1983. The relationship between abundances of meiofauna and their suspected microbial food (diatoms and bacteria). Estuar. coast. Shelf Sci. 17: 381–394.

    Article  Google Scholar 

  • Nilsson, P., B. Jonsson, I. L. Swanberg & K. Sundback, 1991. Response of a marine shallow-water sediment system to an increased load of inorganic nutrients. Mar. Ecol. Prog. Ser. 71: 275–290.

    Google Scholar 

  • Notenboom, J., K. de Boom & P. van Beelen, 1990. Grondwaterlevensgemeenschappen: een studie naar meercellige organismen in het bovenste grondwater en de milieuhygiënische implicaties. RIVM Bilthoven, report 710302001: 1–95.

    Google Scholar 

  • O'Doherty, E. C., 1985. Stream-dwelling copepods: their life history and ecological significance. Limnol. Oceanogr. 30: 554–564.

    Article  Google Scholar 

  • Palmer, M. A., 1990. Temporal and spatial dynamics of meiofauna within the hyporheic zone of Goose Creek, Virginia. J. N. Am. Benthol. Soc. 9: 17–25.

    Article  Google Scholar 

  • Pennak R. W., 1988. Ecology of freshwater meiofauna. In R. P. Higgins & H. Thiel (eds), Introduction to the study of meiofauna. Smithsonian Institution Press, Washington D.C., 488 pp.

    Google Scholar 

  • Pennak, R. W. & J. V. Ward, 1986. Interstitial faunal communities of the hyporheic and adjacent groundwater biotopes of a Colorado mountain stream. Arch. Hydrobiol. 74: 356–396.

    Google Scholar 

  • Remane, A. & C. Schlieper, 1971. Biology of brackish water. Wiley Publishers, New York, 372 pp.

    Google Scholar 

  • SAS Institute Inc., 1985. SAS User's Guide: Statistics, Version 5 Edition. Cary, North Carolina, 1292 pp.

  • Sokal, R. R. & F. J. Rohlf, 1981. Biometry. W. H. Freeman and Company, New York, 859 pp.

    Google Scholar 

  • Stanford, J. A. & J. V. Ward, 1988. The hyporheic habitat of river ecosystems. Nature 335: 64–66.

    Article  Google Scholar 

  • Strayer, D., 1985. The benthic microorganisms of Mirror Lake, New Hampshire. Arch. Hydrobiol. 72: 287–486.

    Google Scholar 

  • Strayer, D., 1988. Crustaceans and mites (Acari) from hyporheic and other underground waters in southeastern New York. Stygologia 4: 192–207.

    Google Scholar 

  • Strayer, D., In press. Limits to biological distributions in groundwater. In J. Gibert, D. Danielopol & J. Stanford (eds), Groundwater ecology. Academic Press, San Diego.

  • Strayer, D. & E. Bannon-O'Connell, 1988. Aquatic microannelids (Oligochaeta and Aphaanoneura) of underground waters of southeastern New York. Am. Midl. Nat. 119: 327–335.

    Article  Google Scholar 

  • Strayer, D. & E. Bannon-O'Connell, 1992. The hyporheic nematode community of some streams in southeastern New York state, USA. Stygologia 7: 143–148.

    Google Scholar 

  • Thurman, E. M., 1985. Organic geochemistry of natural waters. Martinus Nijhoff/Dr W. Junk Publishers, Boston, 497 pp

    Google Scholar 

  • Triska, F. J., V. C. Kennedy, R. J. Avanzino, G. W. Zellweger & K. E. Bencala, 1989. Retention and transport of nutrients in a third-order stream in northwestern California: hyporheic processes. Ecology 70: 1893–1905.

    Article  Google Scholar 

  • Ward, J. V. & N. Voelz, 1990. Gradient analysis of interstitial meiofauna along a longitudinal stream profile. Stygologia 5: 93–99.

    Google Scholar 

  • White, D. S., 1993. Perspectives on defining and delineating hyporheic zones. J. N. Amer. Benthol. Soc 12: 61–69.

    Article  Google Scholar 

  • Whitman, R. L. & W. J. Clark, 1982. Availability of dissolved oxygen in interstitial waters of a sandy creek. Hydrobiologia 92: 651–658.

    Google Scholar 

  • Widbom, B. & R. Elmgren, 1988. Response of benthic meiofauna to nutrient enrichment of experimental marine ecosystems. Mar. Ecol. Progr. Ser. 42: 257–268.

    Google Scholar 

  • Williams, D. D., 1989. Towards a biological and chemical definition of the hyporheic zone in two Canadian rivers. Freshwat. Biol. 22: 189–208.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hakenkamp, C.C., Palmer, M.A. & James, B.R. Metazoans from a sandy aquifer: dynamics across a physically and chemically heterogeneous groundwater system. Hydrobiologia 287, 195–206 (1994). https://doi.org/10.1007/BF00010734

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00010734

Key words

Navigation