Skip to main content
Log in

Identification of an immediate-early salicylic acid-inducible tobacco gene and characterization of induction by other compounds

  • Mini-review
  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Tobacco genes that are induced in response to salicylic acid (SA) treatment with immediate-early kinetics were identified by differential mRNA display. Detailed analysis of IS10a, one cDNA clone identified by this method, revealed induction within 30 min of treatment, with a peak of expression at 3 h, that decayed rapidly thereafter. Treatment with the protein synthesis inhibitor, cycloheximide (CHX), also caused induction of IS10a mRNA to comparable levels, but the IS10a mRNA continued to accumulate after 3 h of induction. In combination, CHX and SA led to a superinduction of IS10a mRNA levels that was also sustained. Half-maximal induction was evident at ca. 100–150 μM SA. In addition to SA, induction of IS10a occurred to varying degrees upon treatment with acetylsalicylic acid, benzoic acid, 2,4-dichlorophenoxyacetic acid, methyl jasmonate, and hydrogen peroxide, whereas treatment with other compounds had no effect. The proteins encoded by IS10a and a second highly homologous cDNA show sequence similarity to UDP-glucose: flavonoid glucosyltransferases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

2,4-D:

2,4-dichlorophenoxyacetic acid

4HBA:

4-hydroxybenzoic acid

aa:

amino acid

bp:

base pair

nt:

nucleotide

ASA:

acetyl salicylic acid

BA:

benzoic acid

CHX:

Cycloheximide

MJ:

methyl jasmonate

PCR:

polymerase chain reaction

SA:

salicylic acid

TMV:

tobacco mosaic virus

References

  1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic alignment search tool. J Mol Biol 215: 403–410 (1990).

    Article  PubMed  Google Scholar 

  2. An G, Costa MA, Ha S-B: Nopaline synthase promoter is wound inducible and auxin inducible. Plant Cell 2: 225–233 (1990).

    Article  PubMed  Google Scholar 

  3. Asselin A, Grenier J, Cote F: Light- accumulation of b (pathogenis-related) proteins inNicotiana green tissue induced by various chemicals or prolonged floating on water Can J Bot 63: 1276–1282 (1985).

    Google Scholar 

  4. Bi Y-M, Kenton P, Mur L, Darby R, Draper J: Hydrogen peroxide does not function downstream of salicylic acid in the induction of PR protein expression. Plant J 8: 235–245 (1995).

    Article  PubMed  Google Scholar 

  5. Boot KJM, van der Zaal BJ, Velterop J, Quint A, Mennes AM, Hooykaas PJJ, Libbenga KR: Further characterization of expression of auxin-induced genes in tobacco (Nicotiana tabacum) cell-suspension cultures. Plant Physiol 102: 513–520 (1993).

    PubMed  Google Scholar 

  6. Boutry M, Chua N-H: A nuclear gene encoding the beta subunit of the mitochondrial ATP synthase inNicotiana plumbaginifolia. EMBO J 4: 2159–2165 (1985).

    PubMed  Google Scholar 

  7. Chen Z, Ricigliano JW, Klessig DF: Purification and characterization of a soluble salicylic acid-binding protein from tobacco. Proc Natl Acad Sci USA 90: 9533–9537 (1993).

    PubMed  Google Scholar 

  8. Chen Z, Silva H, Klessig DF: Active oxygen species in the induction of plant systemic acquired resistance by salicylc acid. Science 262: 1883–1886 (1993).

    PubMed  Google Scholar 

  9. Cleland CF, Ajami A: Identification of the flower-inducing factor isolated from aphid honeydew as salicylic acid. Plant Physiol 54: 904–906 (1974).

    Google Scholar 

  10. Dai Z, An G: Induction of nopaline synthase promoter activity by H2O2 has no direct correlation with salicylic acid. Plant Physiol 109: 1191–1197 (1995).

    Article  PubMed  Google Scholar 

  11. Dietrich A, Mayer JE, Hahlbrock K: Fungal elicitor triggers rapid, transient, and specific protein phosphorylation in parsley cell suspension cultures. J Biol Chem 265: 6360–6368 (1990).

    Google Scholar 

  12. Droog FNJ, Hooykaas PJJ, Libbenga KR, van der Zaal EJ: Proteins encoded by an auxin-regulated gene family of tobacco share limited but significant homology with glutathioneS-transferases and one member indeed showsin vitro GST activity. Plant Mol Biol 21: 965–972 (1993).

    Article  PubMed  Google Scholar 

  13. Enyedi AJ, Yalpani N, Silverman P, Raskin I: Localization, conjugation, and function of salicylic acid in tobacco during the hypersensitive reaction to tobacco mosaic virus. Proc Natl Acad Sci USA 89: 2480–2484 (1992).

    PubMed  Google Scholar 

  14. Felix G, Grosskopf DG, Regenass M, Boller T: Rapid changes of protein phosphorylation are involved in transduction of the elicitor signal in plant cells. Proc Natl Acad Sci USA 88: 8831–8834 (1991).

    PubMed  Google Scholar 

  15. Felix G, Meins FJr: Developmental and hormonal regulation of β-1,3-glucanase in tobacco. Planta 167: 206–211 (1986).

    Google Scholar 

  16. Fritzemeier K-H, Cretin C, Kombrink E, Rohwer F, Taylor J, Sheel D, Hahlbrock K: Transient induction of phenylalanine ammonia-lyase and 4-coumarate: CoA ligase mRNAs in potato leaves infected with virulent or avirulent races ofPhytophthora infestans. Plant Physiol 85: 34–41 (1987).

    Google Scholar 

  17. Green PJ: Control of mRNA stability in higher plants. Plant Physiol 102: 1065–1070 (1993).

    PubMed  Google Scholar 

  18. Hennig J, Malamy J, Grynkiewicz G, Indulski J, Klessig DF: Interconversion of the salicylic acid signal and its glucoside in tobacco. Plant J 4: 593–600 (1993).

    Article  PubMed  Google Scholar 

  19. Herschman HR: Primary response genes induced by growth factors and tumor promoters. Annu Rev Biochem 60: 281–319 (1991).

    Article  PubMed  Google Scholar 

  20. Jepson I, Lay VJ, Holt DC, Bright SWJ, Greenland AJ: Cloning and characterization of maize herbicide safenerinduced cDNAs encoding subunits of glutathioneS-transferase isoforms I, II and IV. Plant Mol Biol 26: 1855–1866 (1994).

    PubMed  Google Scholar 

  21. Jung J-L, Maurel S, Fritig B, Hahne G: Different pathogenesis-related-proteins are expressed in sunflower (Helianthus annuus L.) in response to physical, chemical and stress factors. J Plant Physiol 145: 153–160 (1995).

    Google Scholar 

  22. Kapulnik Y, Yalpani N, Raskin I: Salicylic acid induces cyanide-resistant respiration in tobacco cell cultures. Plant Physiol 100: 1921–1926 (1992).

    Google Scholar 

  23. Kato K, Matsumoto T, Koiwai A, Mizusaki S, Nishida K, Noguchi M, Tamaki E: Liquid suspension culture of tobacco cells. In: Terui G (eds) Fermentation Technology Today, pp. 689–695. Society for Fermentation Technology, Osaka (1972).

    Google Scholar 

  24. Kim S-R, Kim Y, An G: Identification of methyl jasmonate and salicylic acid response elements from the nopaline synthase (nos) promoter. Plant Physiol 103: 97–103 (1993).

    Article  PubMed  Google Scholar 

  25. Koes RE, Quattrocchio F, Mol JNM: The flavonoid biosynthetic pathway in plants: function and evolution. BioEssays 16: 123–132 (1994).

    Google Scholar 

  26. Kroon J, Souer E, de Graaff A, Xue Y, Mol J, Koes R: Cloning and structural analysis of the anthocyanin pigmentation locusRt ofPetunia hybrida: characterization of insertion sequences in two mutant alleles. Plant J 5: 69–80 (1994).

    Article  PubMed  Google Scholar 

  27. Lam E, Benedyk M, Chua N-H: Characterization of phytochrome-regulated gene expression in a photoautotrophic cell suspension: possible role for calmodulin. Mol Cell Biol 9: 4819–4823 (1989).

    PubMed  Google Scholar 

  28. Lawton MA, Lamb CJ: Transcriptional activation of plant defense genes by fungal elicitor, wounding, and infection. Mol Cell Biol 7: 335–341 (1987).

    PubMed  Google Scholar 

  29. Levine A, Tenhaken R, Dixon R, Lamb C: H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell 79: 583–593 (1994).

    Article  PubMed  Google Scholar 

  30. Lewis EJ, Harrington CA, Chikaraishi DM: Transcriptional regulation of the tyrosine hydroxylase gene by glucocorticoid and cyclic AMP. Proc Natl Acad Sci USA 84: 3550–3554 (1987).

    PubMed  Google Scholar 

  31. Liang P, Pardee AB: Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science 257: 967–971 (1992).

    PubMed  Google Scholar 

  32. Liu X, Lam E: Two binding sites for the plant transcription factor ASF-1 can respond to auxin treatments in transgenic tobacco. J Biol Chem 269: 668–675 (1994).

    PubMed  Google Scholar 

  33. Logemann J, Schell J, Willmitzer L: Improved method for the isolation of RNA from plant tissues. Anal Biochem 163: 16–20 (1987).

    PubMed  Google Scholar 

  34. Malamy J, Carr JP, Klessig DF, Raskin I: Salicylic acid: a likely endogenous signal in the resistance response of tobacco to viral infection. Science 250: 1002–1004 (1990).

    Google Scholar 

  35. Mehdy M: Active oxygen species in plant defense against pathogens. Plant Physiol 105: 467–472 (1994).

    PubMed  Google Scholar 

  36. Mo Y, Nagel C, Taylor LP: Biochemical complementation of chalcone synthase mutants defines a role for flavonols in functional pollen. Proc Natl Acad Sci USA 89: 7213–7217 (1992).

    PubMed  Google Scholar 

  37. Morgan JI, Curran T: Stimulus-transcription coupling in neurons: role of cellular immediate-carly genes. Trends Neurosci 12: 459–462 (1989).

    Article  PubMed  Google Scholar 

  38. Murashige T, Skoog F: A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15: 493–497 (1962).

    Google Scholar 

  39. Neuenschwander U, Vernooij B, Friedrich L, Uknes S, Kessman H, Ryals J: Is hydrogen peroxide a second messenger of salicylic acid in systemic acquired resistance? Plant J 8: 227–233 (1995).

    Article  Google Scholar 

  40. Ohme-Takagi M, Taylor CB, Newman TC, Green PJ: The effect of sequences with high AU content on mRNA stability in tobacco. Proc Natl Acad Sci USA 90: 11811–11815 (1993).

    PubMed  Google Scholar 

  41. Pfitzner UM, Pfitzner AJ, Goodman HM: DNA sequence analysis of a PR1a gene from tobacco: molecular relationship of heat shock and pathogen responses in plants. Mol Gen Genet 211: 290–295 (1988).

    Article  Google Scholar 

  42. Picton S, Gray J, Barton S, AbuBakar U, Lowe A, Grierson D: cDNA cloning and characterisation of novel ripening-related mRNAs with altered patterns of accumulation in theripening inhibitor (rin) tomato ripening mutant. Plant Mol Biol 23: 193–207 (1993).

    Google Scholar 

  43. Qin X, Holuigue L, Horvath DM, Chua N-H: Immediate-early induction of transcription by salicylic acid viaas-1. Plant Cell 6: 863–874 (1994).

    Article  PubMed  Google Scholar 

  44. Ralston EJ, English JJ, Dooner HK: Sequence of threebronze alleles of maize and correlation with the geneic fine structure. Genetics 119: 185–197 (1988).

    PubMed  Google Scholar 

  45. Raskin I, Turner IM, Melander WR: Regulation of heat production in the influorescences of anArum lily by endogenous salicylic acid. Proc Natl Acad Sci USA 86: 2214–2218 (1989).

    Google Scholar 

  46. Rasmussen JB, Hammerschmidt R, Zook MN: Systemic induction of salicylic acid accumulation in cucumber after inoculation withPseudomonas syringeae pv.syringeae. Plant Physiol 97: 1342–1347 (1991).

    Google Scholar 

  47. Rhoads DM, McIntosh L: Salicylic acid regulation of respiration in higher plants: alternative oxidase expression. Plant Cell 4: 1131–1139 (1993).

    Article  Google Scholar 

  48. Sandermann HJr: Higher plant metabolism of xenobiotics: the ‘green liver’ concept. Pharmacogenetics 4: 225–241 (1994).

    PubMed  Google Scholar 

  49. Sembdner G, Atzorn R, Schneider G: Plant hormone conjugation. Plant Mol Biol 26: 1459–1481 (1994).

    Article  PubMed  Google Scholar 

  50. Shirzadegan M, Christie P, Seeman JR: An efficient method for the isolation of RNA from tissue cultured plant cells. Nucl Acid Res 19: 6055 (1991).

    Google Scholar 

  51. Shyu A-B, Greenberg ME, Belasco JG: Thec-fos transcript is targeted for rapid decay by two distinct mRNA degradation pathways. Genes Devel 3: 60–72 (1989).

    PubMed  Google Scholar 

  52. Sparvoli F, Martin C, Scienza A, Gavazzi G, Tonelli G, Cloning and molecular analysis of structural genes involved in flavonoid and stilbene biosynthesis in grape (Vitis vinifera L.) Plant Mol Biol 24: 743–755 (1994).

    PubMed  Google Scholar 

  53. Staskawicz BJ, Ausubel FM, Baker BJ, Ellis JG, Jones JDG: Molecular genetics of plant disease resistance. Science 268: 661–667 (1995).

    PubMed  Google Scholar 

  54. Szerszen JB, Szczyglowski K, Bandurski RS:iaglu, a gene fromZea Mays involved in conjugation of growth hormone indole-3-acetic acid. Science 265: 1699–1701 (1994).

    PubMed  Google Scholar 

  55. Takahashi Y, Nagata T:parB: an auxin-regulated gene encoding glutathioneS-transferase. Proc Natl. Acad Sci USA 89: 56–59 (1992).

    PubMed  Google Scholar 

  56. Theologis A, Huynh TV, Davis RW: Rapid induction of specific mRNAs by auxin in pea epicotyl tissue. J Mol Biol 183: 53–68 (1985).

    PubMed  Google Scholar 

  57. Uknes S, Dincher S, Friedrich L, Negrotto D, Williams S, Thompson-Taylor H, Potter S, Ward E, Ryals J: Regulation of pathogenesis-related protein-la gene expression in tobacco. Plant Cell 5: 159–169 (1993).

    Article  PubMed  Google Scholar 

  58. van Loon LC: The induction of pathogenesis-related proteins by pathogens and specific chemicals. Neth J Plant Pathol 89: 265–273 (1983).

    Google Scholar 

  59. Vera-Estrella R, Barkla BJ, Higging VJ, Blumwauld E: Plant defense response to fungal pathogens. Plant Physiol 104: 209–215 (1994).

    PubMed  Google Scholar 

  60. Ward ER, Uknes SJ, Williams SC, Dincher SS, Wiederhold DL, Alexander DC, Ahl-Goy P, Métraux J-P, Ryals JA: Coordinate gene activity in response to agents that induce systemic acquired resistance. Plant Cell 3: 1085–1094 (1991).

    Article  PubMed  Google Scholar 

  61. Wise RP, Rohde W, Salamini F: Nucleotide sequence of theBronze-1 homologous gene fromHordeum vulgare. Plant Mol Biol 14: 277–279 (1990).

    Article  PubMed  Google Scholar 

  62. Yalpani N, Balke NE, Schulz M: Induction of UDP-glucose:salicylic acid glucosyltransferase in oat roots. Plant Physiol 100: 1114–1119 (1992).

    Google Scholar 

  63. Yalpani N, Schultz M, Davis MP, Baker NE: Partial purification and properties of an inducible uridine 5′-diphosphate-glucose:salicylic acid glucosyltransferase from oat roots. Plant Physiol 100: 457–463 (1992).

    Google Scholar 

  64. Yalpani N, Silverman P, Wilson TMA, Kleier DA, Raskin I: Salicylic acid is a systemic signal and an inducer of pathogenesis-related proteins in virus-infected tobacco. Plant Cell 3: 809–818 (1991).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Horvath, D.M., Chua, NH. Identification of an immediate-early salicylic acid-inducible tobacco gene and characterization of induction by other compounds. Plant Mol Biol 31, 1061–1072 (1996). https://doi.org/10.1007/BF00040724

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00040724

Key words

Navigation