Skip to main content
Log in

Use of the gene pools of Triticum turgidum ssp. dicoccoides and Aegilops squarrosa for the breeding of common wheat (T. aestivum), through chromosome-doubled hybrids

I. Two strategies for the production of the amphiploids

  • Published:
Euphytica Aims and scope Submit manuscript

Summary

Triticum turgidum ssp. dicoccoides (wild emmer wheat, AABB, 2n=28) and Aegilops squarrosa (goat grass, DD, 2n=14) comprise a rich reservoir of valuable genetic material, which could be useful for the breeding of common wheat (T. aestivum, AABBDD, 2n=42). Many accessions of both wild species, most of them selected for resistance to stripe rust, were used to make amphiploids. Two strategies were applied: (1) the production of autopolyploid cytotypes of the wild species, followed by hybridisation, and (2) the production of allotriploid interspecific hybrids, followed by doubling of the number of chromosomes. The first route was unsuccessful because of failure of the crosses between the autopolyploid cytotypes, possibly due to incongruity between the two species and to reduced fertility in the autopolyploid cytotypes. The second route yielded the desired synthetic hexaploids. However, the rate of success of the crosses was low and there were great differences between years, and within years between crosses. Embryo rescue was applied to obtain the primary hybrids (2n=21), which were highly sterile and had on average 0.3 bivalents and 20.4 univalents per pollen mother cell. Various abnormalities were recorded. Doubling of the number of chromosomes sometimes occurred spontaneously or was brought about by colchicine treatment. The large scale of the interspecific hybridisation programme ensured that one-third of the female and one-sixth of the male accessions were represented in the synthetic hexaploids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bahrman, N. & H., Thiellement, 1987. Parental genome expression in synthetic wheats (Triticum turgidum sp. × T. tauschii sp.) revealed by two dimensional electrophoresis of seedling proteins. Theor. Appl. Genet. 74: 218–223.

    Google Scholar 

  • Blum, A., A. Ebercon, B. Sinmema, H. Goldenberg, Z.K. Gerechter-Amitai & A. Grama, 1983. Drought resistance reactions of wild emmer (T. dicoccoides) and wild emmer × wheat derivatives. p. 433–438. In: S. Sakamoto (Ed). Proc. 6th Int. Wheat Genet. Symp., Kyoto, Japan.

  • Chèvre, A.M., J., Jahier & M., Trottet, 1989. Expression of disease resistance genes in amphiploid wheats — Triticum tauschii (Coss.) Schmal. Cer. Res. Comm. 17: 23–29.

    Google Scholar 

  • De, Buyser, J. & Y., Henry, 1986. Wheat: production of haploids, performance of doubled haploids, and yield trials. p. 73–88. In: Y.P.S., Bajaj (Ed). Biotechnology in Agriculture and Forestry, Vol. 2: Crops I, Springer Verlag, Berlin.

    Google Scholar 

  • Fedak, G., 1985. Wide crosses in Hordeum. p. 155–186. In: D.C., Rasmusson (Ed). Barley, Agronomy Monograph No 26, ASA-CSSA-SSSA, Madison, Wisconsin, USA.

    Google Scholar 

  • Gerechter-Amitai, Z.K., A., Grama, C.H., van, Silfhout & F., Kleitman, 1989a. Resistance to yellow rust in Triticum dicoccoides II. Crosses with resistant Triticum dicoccoides sel. G-25. Neth. J. Pl. Path. 95: 79–83.

    Google Scholar 

  • Gerechter-Amitai, Z.K., C.H., van, Silfhout, A., Grama & F., Kleitman, 1989b. Yr15 — a new gene for resistance to Puccinia striiformis in Triticum dicoccoides sel. G-25. Euphytica 43: 189–190.

    Google Scholar 

  • Gill, B.S., L.E. Browder, J.H. Hatchett, T.L. Harvey, T.J. Martin, W.J. Raupp, H.C. Sharma & J.G. Waines, 1983. Disease and insect resistance in wild wheats. p. 785–792. In: S. Sakamoto (Ed). Proc. 6th Int. Wheat Genet. Symp., Kyoto, Japan.

  • Gill, B.S., W.J., Raupp, H.C., Sharma, L.E., Browder, J.H., Hatchett, T.L., Harvey, J.G., Moseman & J.G., Waines, 1986. Resistance in Aegilops squarrosa to wheat leaf rust, wheat powdery mildew, greenbug, and Hessian fly. Plant Dis. 70: 553–556.

    Google Scholar 

  • Gorham, J., 1990a. Salt tolerance in the Triticeae: K/Na discrimination in Aegilops species. J. Exp. Bot. 41: 615–621.

    Google Scholar 

  • Gorham, J., 1990b. Salt tolerance in the Triticeae: K/Na discrimination in synthetic hexaploid wheats. J. Exp. Bot. 41: 623–627.

    Google Scholar 

  • Groenewegen, L.J.M. & C.H., van, Silfhout, 1988. The use of wild emmer in Dutch practical wheat breeding. p. 184–189. In: M.L. Jorna & L.A.J. Slootmaker (Comp.). Cereal breeding related to integrated cereal production. Pudoc, Wageningen.

    Google Scholar 

  • Hammer, K., 1985. Vorarbeiten zur monographischen Darstellung von Wildpflanzensortimenten: Aegilops L. — Resistenzuntersuchungen. Kulturpflanze 33: 123–131.

    Google Scholar 

  • Hatchett, J.H. & B.S. Gill, 1983. Expression and genetics of resistance to Hessian fly in Triticum tauschii (Coss). Schmal. p. 807–811. In: S. Sakamoto (Ed). Proc. 6th Int. Wheat Genet. Symp., Kyoto, Japan.

  • Henry, Y. & J., de, Buyser, 1980. Androgenèse sur des blés tendres en cours de sélection. 2. L'obtention des grains. Z. Pflanzenzücht. 84: 9–17.

    Google Scholar 

  • Henson, J.F., J.W., Gronwald, R.T., Leonard & J.G., Waines, 1986. Nitrogen use in a seedling synthetic allohexaploid developed from durum wheat and Aegilops squarrosa. Crop Sci. 26: 1074–1076.

    Google Scholar 

  • Inagaki, M., 1985. Chromosome doubling of the wheat haploids obtained from crosses with Hordeum bulbosum L. Japan. J. Breed 35: 193–195.

    Google Scholar 

  • Jaradat, A.A., T.T. Jaradat & S. Jana, 1988. Genetic diversity of wild wheat, Triticum dicoccoides, in Jordan. p. 93–97. In: T.E. Miller & R.M.D. Koebner (Eds). Proc. 7th Int. Wheat Genet. Symp., Inst. Plant Sci. Res., Cambridge, UK.

  • Jensen, C.J., 1976. Barley monoploids and doubled monoploids: techniques and experience. p. 316–345. In: H., Gaul (Ed). Barley Genetics III. Verlag Karl Thiemig, München, Germany.

    Google Scholar 

  • Johnson, R.C., H., Kebede, D.W., Mornhinweg, B.F., Carver, A., Lane Rayburn & H.T., Nguyen, 1987. Photosynthetic difference among Triticum accessions at tillering. Crop Sci. 27: 1046–1050.

    Google Scholar 

  • Kerber, E.R. & P.L., Dyck, 1969. Inheritance in hexaploid wheat of leaf rust resistance and other characters derived from Aegilops squarrosa. Can. J. Genet. Cytol. 11: 639–647.

    Google Scholar 

  • Kerber, E.R. & P.L. Dyck, 1978. Resistance to stem and leaf rust of wheat in Aegilops squarrosa and transfer of a gene for stem rust resistance to hexaploid wheat. p. 358–364. In: S. Ramanujam (Ed). Proc. 5th Int. Wheat Genet. Symp., New Delhi.

  • Kerby, K. & J., Kuspira, 1987. The phylogeny of the polyploid wheats Triticum aestivum (bread wheat) and Triticum turgidum (macaroni wheat). Genome 29: 722–737.

    Google Scholar 

  • Kihara, H. & F. Lilienfeld, 1949. A new synthesized 6x-wheat. p. 307–319. In: G. Bonnier & R. Larsson (Ed). Proc. 8th Int. Congr. Genet., Hereditas Suppl. Vol.

  • Kimber, G. & R., Riley, 1963. Haploid angiosperms. Bot. Rev. 29: 480–531.

    Google Scholar 

  • Kolster, P., C.F. Krechting & W.M.J. van Gelder, 1988. Variation in high molecular weight glutenin subunits of Triticum aestivum and T. turgidum ssp. dicoccoides. Euphytica Suppl.: 141–145.

  • Kuspira, J., R.N., Bhambhani & T., Shimada, 1985. Genetic and cytogenetic analysis of the A genome of Triticum monococcum. I. Cytology, breeding behaviour, fertility, and morphology of induced autotetraploids. Can. J. Genet. Cytol. 27: 51–63.

    Google Scholar 

  • Lagudah, E.S. & G.M., Halloran, 1988. Phylogenetic relationships of Triticum tauschii the D genome donor to hexaploid wheat. I. Variation in HMW subunits of glutenin and gliadins. Theor. Appl. Genet. 75: 592–598.

    Article  Google Scholar 

  • Lange, W. & A.G., Balkema-Boomstra, 1988. The use of wild species in breeding barley and wheat, with special reference to the progenitors of cultivated species. p. 157–178. In: M.L. Jorna & L.A.J. Slootmaker (Comp.). Cereal breeding related to integrated cereal production. Pudoc, Wageningen.

    Google Scholar 

  • Lange, W. & G., Jochemsen, 1992. Use of the gene pools of Triticum turgidum ssp. dicoccoides and Aegilops squarrosa for the breeding of common wheat (T. aestivum), through chromosome-doubled hybrids. II. Morphology and meiosis of the amphiploids. Euphytica 59: 213–220.

    Google Scholar 

  • Le, H.T., D.A., Reicosky, C.R., Olien & C.E., Cress, 1986. Freezing hardiness of some accessions of Triticum tauschii and T. turgidum var. durum. Can. J. Plant Sci. 66: 893–899.

    Google Scholar 

  • Levy, A.A. & M., Feldman, 1989a. Genetics of morphological traits in wild wheat, Triticum turgidum var. dicoccoides. Euphytica 40: 275–281.

    Google Scholar 

  • Levy, A.A. & M., Feldman, 1989b. Location of genes for high grain protein percentage and other quantitative traits in wild wheat Triticum turgidum var. dicoccoides. Euphytica 41: 113–122.

    Google Scholar 

  • Levy, A.A. & M., Feldman, 1989c. Intra- and inter-population variations in grain protein percentage in wild tetraploid wheat, Triticum turgidum var. dicoccoides. Euphytica 42: 251–258.

    Google Scholar 

  • Levy, A.A., G., Galili & M., Feldman, 1988a. Polymorphism and genetic control of high molecular weight glutenin subunits in wild tetraploid wheat Triticum turgidum var. dicoccoides. Heredity 61: 63–72.

    Google Scholar 

  • Levy, A.A., M. Zaccai, E. Millet & M. Feldman, 1988b. Utilization of wild emmer for the improvement of grain protein percentage of cultivated wheat. p. 969–974. In: T.E. Miller & R.M.D. Koebner (Eds). Proc. 7th Int. Wheat Genet. Symp. Inst. Plant Sci. Res., Cambridge, UK.

  • Limin, A.E. & D.B. Fowler, 1981. Cold hardiness of some wild relatives of hexaploid wheat. Can J. Bot. 59: 572–573.

    Google Scholar 

  • Martens, J.W., D.J. Samborski & E.R. Kerber, 1984. Resistance to Puccinia graminis and Puccinia recondita in Aegilops squarrosa. In: VIe Conf. Eur. Méditerr. Rouilles Céréales, Coll. INRA 25: 87–90.

  • McFadden, E.S. & E.R., Sears, 1946. The origin of Triticum spelta and its free-threshing hexaploid relatives. J. Hered. 37: 81–89 & 107–116.

    Google Scholar 

  • McFadden, E.S. & E.R., Sears, 1947. The genome approach in radical wheat breeding. J. Amer. Soc. Agron. 39: 1011–1026.

    Google Scholar 

  • Miller, T.E., 1987. Systematics and evolution. p. 1–30. In: F.G.H., Lupton (Ed). Wheat breeding: its scientific basis. Chapman and Hall, London.

    Google Scholar 

  • Multani, D.S., H.G., Dhaliwal, P., Singh & K.S., Gill, 1988. Synthetic amphiploids of wheat as a source of resistance to Karnal bunt (Neovossia indica). Plant Breed. 101: 122–125.

    Google Scholar 

  • Murashige, T. & F., Skoog, 1962. Revised media for rapid growth and bioassays with tobacco tissue culture. Physiol. Plant. 14: 423–426.

    Google Scholar 

  • Nevo, E., 1988. Genetic resources of wild emmer wheat revisited: genetic evolution, conservation and utilization. p. 121–126. In: T.E. Miller & R.M.D. Koebner (Eds). Proc. 7th Int. Wheat Genet. Symp., Inst. Plant Sci. Res., Cambridge, UK.

  • Nevo, E. & A., Beiles, 1989. Genetic diversity of wild emmer wheat in Israel and Turkey. Structure, evolution, and application in breeding. Theor. Appl. Genet. 77: 421–455.

    Article  Google Scholar 

  • Poyarkova, H., 1988. Morphology, geography and infraspecific taxonomics of Triticum dicoccoides Körn. A retrospective of 80 years of research. Euphytica 38: 11–23.

    Article  Google Scholar 

  • Raupp, W.J., B.S. Gill, L.E. Browder, T.L. Harvey, J.H. Hatchett & D.L. Wilson, 1988. Genetic diversity in wheat relatives for disease and insect resistance. p. 879–884. In: T.E. Miller & R.M.D. Koebner (Eds). Proc. 7th Int. Wheat Genet. Symp., Inst. Plant Sci. Res., Cambridge, UK.

  • Reader, S.M. & T.E., Miller, 1991. The introduction into bread wheat of a major gene for resistance to powdery mildew from wild emmer wheat. Euphytica 53: 57–60.

    Google Scholar 

  • Riley, R. & C.N., Law, 1965. Genetic variation in chromosome pairing. Adv. Genet. 13: 57–114.

    Google Scholar 

  • Riley, R., J., Unrau & V., Chapman, 1958. Evidence on the origin of the B genome in wheat. J. Hered. 49: 91–98.

    Google Scholar 

  • Shah, S.H., J., Gorham, B.P., Forster & R.G., Wyn Jones, 1987. Salt tolerance in the Triticeae: the contribution of the D genome to cation selectivity in hexaploid wheat. J. Exp. Bot. 38: 254–269.

    Google Scholar 

  • Simeone, R., D., Pignone, A., Blanco & M., Attolico, 1989. Cytology and fertility of hybrids and amphiploids between Aegilops caudata L. × Triticum turgidum (L.) Thell. Plant Breed. 103: 189–195.

    Google Scholar 

  • Tanaka, M., 1961. New amphidiploids, synthesized 6x-wheats, derived from Emmer wheat × Aegilops squarrosa. Wheat Inf. Serv. 12: 11.

    Google Scholar 

  • Trottet, M. & F., Dosba, 1983. Analyse cytogénétique et comportement vis-à-vis de Septoria nodorum d'hybrides Triticum sp. × Aegilops squarrosa et de leurs descendances. Agronomie 3: 659–664.

    Google Scholar 

  • Valkoun, J., D Kučerová, P. Bartoš & K. Hammer, 1985. Study of disease resistance in the genus Aegilops for its use in wheat breeding. p. 241–251. In: Proc. Int. Symp. Eucarpia Genet. Res. Sect., Prague.

  • Van, Silfhout, C.J. & Z.K., Gerechter-Amitai, 1988a. Adult-plant resistance to yellow rust in wild emmer wheat. Neth. J. Pl. Path. 94: 267–272.

    Google Scholar 

  • Van, Silfhout, C.H. & Z.K., Gerechter-Amitai, 1988b. A comparative study of resistance to powdery mildew in wild emmer wheat in the seedling and adult plant stage. Neth. J. Pl. Path. 94: 177–184.

    Google Scholar 

  • Van, Silfhout, C.H., A., Grama, Z.K., Gerechter-Amitai & F., Kleitman, 1989a. Resistance to yellow rust in Triticum dicoccoides. I. Crosses with susceptible Triticum durum. Neth. J. Pl. Path. 95: 73–78.

    Google Scholar 

  • Van Silfhout, C.H., G.H.J. Kema & Z.K. Gerechter-Amitai, 1989b. Major genes for resistance to yellow rust in wild emmer wheat. p. 5–15. In: C.H. Van Silfhout. Identification and characterization of resistance to yellow rust and powdery mildew in wild emmer wheat and their transfer to bread wheat. PhD-thesis, Agric. Univ. Wageningen.

  • Von, Bothmer, R., J., Flink, N., Jacobsen, M., Kotimäki & T., Landström, 1983. Interspecific hybridization with cultivated barley (Hordeum vulgare L.). Hereditas 99: 219–244.

    PubMed  Google Scholar 

  • Waines, J.G., B., Ehdaie & D., Barnhart, 1987. Variability in Triticum and Aegilops species for seed characteristics. Genome 29: 41–46.

    Google Scholar 

  • Whelan, E.D.P. & J.B., Thomas, 1989. Chromosomal location in common wheat of a gene (Cnc 1) from Aegilops squarrosa that conditions resistance to colonization by the wheat curl mite. Genome 32: 1033–1036.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lange, W., Jochemsen, G. Use of the gene pools of Triticum turgidum ssp. dicoccoides and Aegilops squarrosa for the breeding of common wheat (T. aestivum), through chromosome-doubled hybrids. Euphytica 59, 197–212 (1992). https://doi.org/10.1007/BF00041273

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00041273

Key words

Navigation