Skip to main content
Log in

Linear trend in multi-species time series

  • Published:
Vegetatio Aims and scope Submit manuscript

Abstract

Investigation of permanent plots is the traditional approach to detect changes in species performance and floristic composition. When the time reserved for investigations is limited and statistically independent replicate samples for normal time series analysis do not exist, ordination of multi-species series is often applied. The approach is further developed here with time series data from wetland communities over six consecutive years. Random fluctuation and linear trend are the two mechanisms which can explain the observed changes. Trend analysis of species scores allows to smooth the data and hence the resulting ordination pattern. The expected scores are a conservative measure for trend, taking into account all the recorded time states of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Austin M. P. 1977. Use of ordination and other multivariate methods to study succession. Vegetatio 35: 165–175.

    Google Scholar 

  • Austin M. P., Cunningham R. B. & Fleming P. M. 1984. New approaches to direct gradient analysis using environmental scales and statistical curve fitting procedures. Vegetatio 55: 11–27.

    Google Scholar 

  • Clements F. E. 1916. Plant succession and analysis of the development of vegetation. Carnegie Inst. Wash. Publ. 242: 1–512.

    Google Scholar 

  • Crawley M. J. (ed.) 1986. Plant ecology. Blackwell Scientific Publications, Oxford.

    Google Scholar 

  • Dahl E. 1960. Some measures of uniformity in vegetation analysis. Ecology 41: 805–808.

    Google Scholar 

  • Feoli E. & Orlóci L. 1985. Species dispersion profiles of anthropogenic grasslands in the Italian eastern Pre-Alps. Vegetatio 60: 113–118.

    Google Scholar 

  • GauchJr H. G. 1982. Multivariate analysis in community ecology. University Press, Cambridge.

    Google Scholar 

  • Gleason H. A. 1926. The individualistic concept of the plant association. Bull. Torrey Bot. Club 53: 7–26.

    Google Scholar 

  • Gleason H. A. 1939. The individualistic concept of the plant association. Amer. Midl. Nat. 21: 91–100.

    Google Scholar 

  • Green R. H. 1979. Sampling design and statistical methods for environmental biologists. Wiley, New York.

    Google Scholar 

  • Kenkel N. & Orlóci L. 1986. Applying metric and nonmetric multidimensional scaling to ecological studies: some new results. Ecology 67: 919–928.

    Google Scholar 

  • Klötzli, F. 1969. Die Grundwasserbeziehungen der Streu-und Moorwiesen im nördlichen Schweizer Mittelland. Beitr. Geobot. Landesaufn. 52.

  • Lagonegro M. 1984. SPAGHET: A coenocline simulator useful to calibrate software detectors. Stud. Geobot. 4: 63–99.

    Google Scholar 

  • Lagonegro, M. 1986. Performances of a proximity index defined on a dendrogram table or a minimum spanning tree graph. Universita degli studi di Trieste, 63 pp.

  • Minchin P. R. 1987a. An evaluation of the relative robustness of techniques for ecological ordination. Vegetatio 69: 89–107.

    Google Scholar 

  • Minchin P. R. 1987b. Simulation of multidimensional community patterns: towards a comprehensive model. Vegetatio 71: 145–156.

    Google Scholar 

  • Noy-Meir I. & van der Maarel E. 1987. Relations between community theory and community analysis in vegetation science: Some historical perspectives. Vegetatio 69: 5–15.

    Google Scholar 

  • Orlóci L. 1978. Multivariate analysis in vegetation research. 2nd ed., Junk, The Hague.

    Google Scholar 

  • Orlóci L. 1981. Probing time series vegetation data for evidence of succession. Vegetatio 46: 31–35.

    Google Scholar 

  • Pielou E. C. 1984. The interpretation of ecological data. A primer on classification and ordination. Wiley, New York.

    Google Scholar 

  • Swaine M. D. & Greig-Smith P. 1980. An application of principal components analysis to vegetation change in permanent plots. J. Ecol. 68: 33–41.

    Google Scholar 

  • ter Braak C. J. F. & Looman C. N. W. 1986. Weighted averaging, logistic regression and the Gaussian response model. Vegetatio 65: 3–11.

    Google Scholar 

  • Tüxen R. 1977. Zum Problem der Homogenität von Assoziations-Tabellen. Doc. Phytosoc. 1: 305–320.

    Google Scholar 

  • van der Maarel E. 1969. On the use of ordination models in phytosociology. Vegetatio 39: 97–114.

    Google Scholar 

  • Watt A. S. 1947. Pattern and process in the plant community. J. Ecol. 35: 1–22.

    Google Scholar 

  • Wildi, O. & Orlóci, L. 1983. Management and multivariate analysis of vegetation data. (2nd revised ed.) Eidg. Anst. Forstl. Versuchswes. Ber. 215. 139 pp.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wildi, O. Linear trend in multi-species time series. Vegetatio 77, 51–56 (1988). https://doi.org/10.1007/BF00045749

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00045749

Keywords

Navigation