Skip to main content
Log in

A smog chamber for studies of the reactions of terpenes and alkanes with ozone and OH

  • Influence of Marine and Terrestrial Biosphere on the Chemical Composition of the Atmosphere
  • Published:
Journal of Atmospheric Chemistry Aims and scope Submit manuscript

Abstract

The design and performance of a smog chamber for the study of photochemical reactions under simulated environmental conditions is described. The chamber is thermostated for aerosol experiments, and it comprises a gas chromatographic sample enrichment system suitable for monitoring hydrocarbons at the ppbv level. By irradiating NO x /alkane-mixtures rate constants for the reaction of OH radicals with n-alkanes are determined from n-pentane to n-hexadecane to be (k±2σ)/10−12 cm3 s−1=4.29±0.16, 6.2±0.6, 7.52 (reference value), 8.8±0.3, 10.2±0.3, 11.7±0.4, 13.7±0.3, 15.1±0.5, 17.5±0.6, 19.3±0.7, 22.3±1.0, and 25.0±1.3, respectively at 312 K. Rate constants, (k±2σ)/10−17 cm3 s−1, for the reaction of ozone with trans-2-butene (21.2±1.0), cis-3-methylpentene-(2) (47.2±1.7), cyclopentene (62.4±3.5), cyclohexene (7.8±0.5), cycloheptene (28.3±1.5), α-pinene (8.6±1.3), and β-pinene (1.4±0.2) are determined in the dark at 297 K using cis-2-butene (13.0) as reference standard.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adeniji, S. A., Kerr, J. A., and Williams, M. R., 1981, Rate constants for ozone-alkene reactions under atmospheric conditions, Int. J. Chem. Kinet. 13, 209–217.

    Google Scholar 

  • Atkinson, R., 1986a, Kinetics and mechanisms of the gas-phase reactions of the hydroxyl radical with organic compounds under atmospheric conditions, Chem. Rev. 86, 69–201.

    Google Scholar 

  • Atkinson, R., 1986b, Estimations of OH radical rate constants from H-atom abstraction from C-H and O-H-bonds over the temperature range 250–1000 K, Int. J. Chem. Kinet. 18, 555–568.

    Google Scholar 

  • Atkinson, R., Aschmann, S. M., and Carter, W. P. L., 1983a, Effects of ring strain on gas-phase rate constants. 2. OH radical reactions with cycloalkenes, Int. J. Chem. Kinet. 15, 1161–1177.

    Google Scholar 

  • Atkinson, R., Aschmann, S. M., Carter, W. P. L., and PittsJr., J. N., 1983b, Effects of ring strain on gas-phase rate constants. I. Ozone reactions with cycloalkenes, Int. J. Chem. Kinet. 15, 721–731.

    Google Scholar 

  • Atkinson, R., Aschmann, S. M., Carter, W. P. L., Winer, A. M., and Pitts, J. N.Jr., 1982a, Kinetics of the reactions of OH radicals with n-alkanes at 299±2 K, Int. J. Chem. Kinet. 14, 781–788.

    Google Scholar 

  • Atkinson, R., Aschmann, S. M., Winer, A. M., and PittsJr., J. N., 1984, Gas phase reactions of NO2 with alkenes and dialkenes, Int. J. Chem. Kinet. 16, 697–706.

    Google Scholar 

  • Atkinson, R., Aschmann, S. M., Winer, A. M., and PittsJr., J. N., 1985, Kinetics and atmospheric implications of the gas-phase reactions of NO3 radicals with a series of monoterpenes and related organics at 294±2 K, Environ. Sci. Technol. 19, 159–163.

    Google Scholar 

  • Atkinson, R. and Carter, W. P. L., 1984, Kinetics and mechanisms of gas-phase reactions of ozone with organic compounds under atmospheric conditions, Chem. Rev. 84, 437–470.

    Google Scholar 

  • Atkinson, R., Winer, A. M., and PittsJr., J. N., 1982b, Rate constants for the gas phase reactions of O3 with the natural hydrocarbons isoprene and α- and β-pinene, Atmos. Environ. 16, 1017–1020.

    Google Scholar 

  • Behnke, W., Holländer, W., Koch, W., Nolting, F., and Zetzsch, C., 1986a, A smog chamber for studies of the photochemical degradation of chemicals in the presence of aerosol surfaces, (submitted).

  • Behnke, W., Nolting, F., and Zetzsch, C., 1986b, unpublished results.

  • Cadle, R. D. and Schadt, C., 1952, Kinetics of the gas phase reaction of olefines with ozone, J. Am. Chem. Soc. 74, 6002–6004.

    Google Scholar 

  • Dimitriades, B., 1981, The role of natural organics in photo-chemical air pollution. Issues and research needs, J. Air Pollut. Control. Ass. 31, 229–235.

    Google Scholar 

  • Gaffney, J. S., Atkinson, R., and PittsJr., J. N., 1975, Relative rate constants for the reaction of O(3P) atoms with selected olefins, monoterpenes, and unsaturated aldehydes. J. Am. Chem. Soc. 97, 5049–5051.

    Google Scholar 

  • Graedel, T. E., 1979, Terpenoids in the atmosphere, Rev. Geophys. Space Phys. 17, 937–947.

    Google Scholar 

  • Grimsrud, E. P., Westberg, H. H., and Rasmussen, R. A., 1975, Atmospheric reactivity of monoterpene hydrocarbons, NO x photooxidation and ozonolysis, Int. J. Chem. Kinet. Symp. 1, 183–195.

    Google Scholar 

  • Holländer, W., Behnke, W., Koch, W., and Pohlmann, G., 1984, in Proc. Third European Sympos, on Physico-Chemical Behaviour of Atmospheric Pollutants, B., Versino and G., Angeletti (eds.), D. Reidel, Dordrecht, pp. 309–319.

    Google Scholar 

  • Japar, S. M., Wu, C. H., and Niki, H., 1974a, Rate constants for the reaction of ozone with olefins in the gas phase, J. Phys. Chem. 78, 2318–2320.

    Google Scholar 

  • Japar, S. M., Wu, C. H., and Niki, H., 1974b, Rate constants for the gas phase reaction of ozone with α-pinene and terpinolene, Environ. Lett. 7, 245–249.

    Google Scholar 

  • Kleindienst, T. E., Harris, G. W., and PittsJr., J. N., 1982, Rates and temperature dependences of the reaction of OH with isoprene, its oxidation products, and selected terpenes, Environ. Sci. Technol. 16, 844–846.

    Google Scholar 

  • Lurmann, F. W., Nitta, B., Ganesan, K., and Lloyd, A. C., 1984, Modelling potential ozone impacts from natural sources — III. Ozone modelling in Tampa/St. Petersburg, Florida, Atmos. Environ. 18, 1133–1143.

    Google Scholar 

  • Rasmussen, R. A., 1972, What do the hydrocarbons from trees contribute to air pollution?, J. Air Poll. Control Assoc. 22, 537–543.

    Google Scholar 

  • Ravishankara, A. R., Wagner, S., Fischer, S., Smith, G., Schiff, R., Watson, R. T., Tesi, G., and Davis, D. D., 1978, A kinetic study of the reactions of OH with several aromatic and olefinic compounds, Int. J. Chem. Kinet. 10, 783–804.

    Google Scholar 

  • Ripperton, L. A., Jeffries, H. E., and White, O., 1972, Formation of aerosols by reaction of ozone with selected hydrocarbons, Adv. Chem. Ser., No. 113, 219–231.

    Google Scholar 

  • Weast, R. C., Astle, M. J., and Beyer, W. H., 1983, CRC Handbook of Chemistry and Physics, CRC Press, Boca Raton, Florida, p. C324.

    Google Scholar 

  • Whitby, R. A. and Coffey, P. E., 1977, Measurements of terpenes and other organics in an Adirondack Mountain pine forest, J. Geophys. Res. 82, 5928–5934.

    Google Scholar 

  • Winer, A. M., Lloyd, A. C., Darnall, K. R., and PittsJr., J. N., 1976, Relative rate constants for the reaction of the hydroxyl radical with selected ketones, chloroethenes, and monoterpene hydrocarbons, J. Phys. Chem. 80, 1635–1639.

    Google Scholar 

  • Zimmerman, P. R., Chatfield, R. B., Fishman, J., Crutzen, P. J., and Hanst, P. L., 1978, Estimates of the production of CO and H2 from the oxidation of hydrocarbon emissions from vegetation, Geophys. Res. Lett. 5, 679–682.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nolting, F., Behnke, W. & Zetzsch, C. A smog chamber for studies of the reactions of terpenes and alkanes with ozone and OH. J Atmos Chem 6, 47–59 (1988). https://doi.org/10.1007/BF00048331

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00048331

Key words

Navigation