Skip to main content
Log in

Placement of medium-sized molecular fragments into active sites of proteins

  • Research Papers
  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Summary

We present an algorithm for placing molecular fragments into the active site of a receptor. A molecular fragment is defined as a connected part of a molecule containing only complete ring systems. The algorithm is part of a docking tool, called FlexX, which is currently under development at GMD. The overall goal is to provide means of automatically computing low-energy conformations of the ligand within the active site, with an accuracy approaching the limitations of experimental methods for resolving molecular structures and within a run time that allows for docking large sets of ligands. The methods by which we plan to achieve this goal are the explicit exploitation of molecular flexibility of the ligand and the incorporation of physicochemical properties of the molecules. The algorithm for fragment placement, which is the topic of this paper, is based on pattern recognition techniques and is able to predict a small set of possible positions of a molecular fragment with low flexibility within seconds on a workstation. In most cases, a placement with rms deviation below 1.0 Å with respect to the X-ray structure is found among the 10 highest ranking solutions, assuming that the receptor is given in the bound conformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kuntz, I.D., Blaney, J.M., Oatley, S.J., Langridge, R.L. and Ferrin, T.E., J. Mol. Biol., 161 (1982) 269.

    Google Scholar 

  2. Kuhl, F.S., Crippen, G.M. and Friesen, D.K., J. Comput. Chem., 5 (1984) 24.

    Google Scholar 

  3. DesJarlais, R.L., Sheridan, R.P., Seibel, G.L., Dixon, J.S., Kuntz, I.D. and Venkataraghavan, R., J. Med. Chem., 31 (1988) 722.

    Google Scholar 

  4. Meng, E.C., Shoichet, B.K. and Kuntz, I.D., J. Comput. Chem., 13 (1992) 505.

    Google Scholar 

  5. Lawrence, M.C. and Davis, P.C., Protein Struct. Funct. Genet., 12 (1992) 31.

    Google Scholar 

  6. Shoichet, B.K. and Kuntz, I.D., Protein Eng., 6 (1993) 723.

    Google Scholar 

  7. DesJarlais, R.L., Sheridan, R.P., Dixon, J.S., Kuntz, I.D. and Venkataraghavan, R., J. Med. Chem., 29 (1986) 2149.

    Google Scholar 

  8. Eisen, M.B., Wiley, D.C., Karplus, M. and Hubbard, R.E., Protein Struct. Funct. Genet., 19 (1994) 199.

    Google Scholar 

  9. Gubernator, K., lecture presented at the conference Bioinformatik-Computereinsatz in den Biowissenschaften, Jena, 1994.

  10. Sandak, B., Nussinov, R. and Wolfson, H.J., Comput. Appl. Biosci., 11 (1995) 87.

    Google Scholar 

  11. Böhm, H.-J., J. Comput.-Aided Mol. Design, 6 (1992) 61.

    Google Scholar 

  12. Moon, J.B. and Howe, W.J., Protein Struct. Funct. Genet., 11 (1991) 314.

    Google Scholar 

  13. Böhm, H.-J., J. Comput.-Aided Mol. Design, 6 (1992) 593.

    Google Scholar 

  14. Gillet, V.J., Johnson, P. and Sike, S., Tetrahedron, 3(6C) (1990) 681.

    Google Scholar 

  15. Gillet, V.J., Newell, W., Mata, P., Myatt, G., Sike, S., Zsoldos, Z. and Johnson, A.P., J. Chem. Inf. Comput. Chem., 34 (1994) 207.

    Google Scholar 

  16. Rotstein, S.H. and Murcko, M.A., J. Comput.-Aided Mol. Design 7 (1993) 23.

    Google Scholar 

  17. Leach, A.R. and Kuntz, I.D., J. Comput. Chem., 13 (1992) 730.

    Google Scholar 

  18. Lewis, R.A. and Leach, A., J. Comput.-Aided Mol. Design, 8 (1994) 467.

    Google Scholar 

  19. Goodsell, D.S. and Olson, A.J., Protein Struct. Funct. Genet., 8 (1990) 195.

    Google Scholar 

  20. Mizutani, M.Y., Tomioka, N. and Itai, A., J. Mol. Biol., 243 (1994) 310.

    Google Scholar 

  21. Fischer, D., Lin, S.L., Wolfson, H.L. and Nussinov, R., J. Mol. Biol., 248 (1995) 459.

    Google Scholar 

  22. Rarey, M., Kramer, B. and Lengauer, T., In Rawlings, C. (Ed.) Proceedings of the Third International Conference on Intelligent Systems in Molecular Biology, AAAI Press, Menlo Park, CA, 1995, pp. 300–308.

    Google Scholar 

  23. Delaney, J.S., J. Mol. Graphics, 10 (1992) 174.

    Google Scholar 

  24. Del, Carpio, C.A., Takahashi, Y. and Sasaki, S., J. Mol. Graphics, 11 (1993) 23.

    Google Scholar 

  25. Bernstein, F.C., Koetzle, T.F., Williams, G.J.B., Meyer, Jr., E.F., Brice, M.D., rodgers, J.R., Kennard, O., Shimanouchi, T. and Tasumi, M., J. Mol. Biol., 112 (1977) 535.

    Google Scholar 

  26. Klebe, G. and Mietzner, T., J. Comput.-Aided Mol. Design, 8 (1994) 583.

    Google Scholar 

  27. Klebe, G., J. Mol. Biol., 237 (1994) 221.

    Google Scholar 

  28. Taylor, R. and Kennard, O., Acc. Chem. Res., 17 (1984) 320.

    Google Scholar 

  29. Murray-Rust, P. and Glusker, J.P., J. Am. Chem. Soc., 106 (1984) 1018.

    Google Scholar 

  30. Tintelnot, M. and Andrews, P., J. Comput.-Aided Mol. Design, 3 (1989) 67.

    Google Scholar 

  31. Böhm, H.-J., J. Comput.-Aided Mol. Design, 8 (1994) 243.

    Google Scholar 

  32. Klebe, G. and Mietzner, T., In Jones, D.W. (Ed.) Organic Crystal Chemistry, Oxford University Press, Oxford, 1992, pp. 135–158.

    Google Scholar 

  33. Hoflack, J. and De, Clercq, P.J., Tetrahedron, 44 (1988) 6667.

    Google Scholar 

  34. Linnainmaa, S., Harwood, D. and Davis, L.S., IEEE Trans. Pattern Anal. Machine Intell., 10 (1988).

  35. Olson, C.F., In IEEE Conference on Computer Vision and Pattern Recognition, 1994, pp. 251–258.

  36. Lamdan, Y. and Wolfson, H.J., Proceedings of the IEEE International Conference on Computer Vision, 1988, pp. 238–249.

  37. Duda, R.O. and Hart, P.E., Pattern Classification and Scene Analysis, Wiley, New York, NY, 1973.

    Google Scholar 

  38. Murtagh, F., Comput. J., 26 (1983) 354.

    Google Scholar 

  39. Dorndorf, U. and Pesch, E., ORSA J. Comput., 6 (1994) 141.

    Google Scholar 

  40. Preparata, F.P. and Shamos, M.I., Computational Geometry, Springer, New York, NY, 1985.

    Google Scholar 

  41. Lenhof, H.-P., Ph.D. Thesis, Universität Saarbrücken, Saarbrücken, 1993.

  42. Ferro, D.R. and Hermans, J., Acta Crystallogr., A 33 (1977) 345.

    Google Scholar 

  43. Richards, F.M., Annu. Rev. Biophys. Bioeng., 6 (1977) 151.

    Google Scholar 

  44. SYBYL, Tripos Associates, Inc., St. Louis, MO, 1994.

  45. Vriend, G., J. Mol. Graph., 8 (1990) 52.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rarey, M., Wefing, S. & Lengauer, T. Placement of medium-sized molecular fragments into active sites of proteins. J Computer-Aided Mol Des 10, 41–54 (1996). https://doi.org/10.1007/BF00124464

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00124464

Keywords

Navigation