Skip to main content
Log in

‘ValleyScan’: A new two-bond drive technique for the calculation of potential energy surfaces with less computational effort

  • Research Papers
  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Summary

A novel, CPU-time inexpensive two-bond drive technique, called ‘ValleyScan’ [1], is described. It makes it possible to omit the chemically nonrelevant points of high energy, which are normally part of a two-dimensional (2D) grid calculation. The new procedure works well for the calculation of the ring inversion of cyclic molecules, but should also be useful for other ‘two-bond’ problems e.g. side-chain movements in larger molecules (e.g. proteins). The algorithm is based upon pseudocode description and can easily be included in any molecular modelling software with an open user interface. Starting from an energy minimum, the calculation scans the potential surface in all directions up to a user-defined energy limit. With this strategy, attention is paid only to the area close to the stationary points-energetically higher structures do not have to be calculated. We applied the procedure to the test molecules 1,3-cyclohexadiene (4), 2H-pyran (5) and 6H-dibenzo[b,d]pyran (6). The extension of this method to the variation of more than two dihedral angles for more complex problems, e.g. sterically more hindered rotation, is in progress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Novel Concepts in Directed Biaryl Synthesis, part 19; for part 18 see Bringmann, G., Gulden, K.P., Fleischhauer, J., Kramer, B., Zobel, E., Tetrahedron, submitted.

  2. Wiberg, K.B. and Boyd, R.H., J. Am. Chem. Soc., 94 (1972) 8426.

    Google Scholar 

  3. Ōsawa, E., J. Comput. Chem., 3 (1982) 400.

    Google Scholar 

  4. Burkert, U. and Allinger, N.L., Molecular Mechanics, ACS Monograph No. 177, American Chemical Society, Washington DC, 1982.

    Google Scholar 

  5. Jaime, C., J. Comput. Chem., 4 (1990) 411.

    Google Scholar 

  6. For a review see: Bringmann, G., Walter, R. and Weirich, R., Angew. Chem., 102 (1990) 1006.

    Google Scholar 

  7. Brighmann, G., Walter, R. and Weirich, R., Angew. Chem. Int. Ed. Engl., 29 (1990) 977.

    Google Scholar 

  8. Bringmann, G., Ewers, Ch.L.J., Göbel, L., Hartung, T., Schöner, B., Schupp, O. and Walter, R., In Werner, H., Adam, W., Bringmann, G., Kiefer, W. and (Griesbeck, A. Eds.) Selective Reactions of Metal-Activated Molecules, Vieweg, Braunschweig 1992, pp. 183–186.

    Google Scholar 

  9. Bringmann, G. and Jansen, J.R., Tetrahedron Lett., 25 (1984) 2537.

    Google Scholar 

  10. Bringmann, G. and Jansen, J.R., Heterocycles, 28 (1989) 137.

    Google Scholar 

  11. Bringmann, G., Busse, H., Güssregen, S., Schöner, B., Zagst, R., Burschka, Ch., In Werner, H., Adam, W., Bringmann, G., Kiefer, W. and Griesbeck, A. (Eds.) Selective Reactions of Metal-Activated Molecules, Braunschweig 1992, pp. 179–182.

  12. Spraque, J.T., Tai, J.C., Yuh, Y. and Allinger, N.L., J. Comput. Chem., 8 (1987) 581.

    Google Scholar 

  13. Warshel, A. and Karplus, M.J., J. Am. Chem. Soc., 94 (1972) 5612.

    Google Scholar 

  14. Allinger, N.L. and Spraque, J.T., J. Am. Chem. Soc., 95 (1973) 3893.

    Google Scholar 

  15. Kao, J. and Allinger, N.L., J. Am. Chem. Soc., 99 (1977) 975.

    Google Scholar 

  16. Favini, G., Zuccarello, F. and Buemi, G., J. Mol. Struct., 3 (1969) 385.

    Google Scholar 

  17. Kao, J., J. Am. Chem. Soc., 109 (1987) 3817.

    Google Scholar 

  18. Allinger, N.L., Li, F. and Yan, L., J. Comp. Chem., 11 (1990) 868.

    Google Scholar 

  19. Saebø, S. and Boggs, J.E., J. Mol. Struct., 73 (1981) 137.

    Google Scholar 

  20. Kuthan, J. and Böhm, S., Collect. Czech. Chem. Commun., 46 (1981) 759.

    Google Scholar 

  21. Böhm, S. and Kuthan, J., Collect. Czech. Chem. Commun., 55 (1990) 10.

    Google Scholar 

  22. Luss, G. and Harmony, M.D., J. Chem. Phys., 43 (1965) 3768.

    Google Scholar 

  23. Butcher, S., J. Chem. Phys., 42 (1965) 1830.

    Google Scholar 

  24. Dallinga, G. and Toneman, L.H., J. Mol. Struct., 1 (1967) 11.

    Google Scholar 

  25. Traetteberg, M., Acta Chem. Scand., 22 (1968) 2305.

    Google Scholar 

  26. Oberhammer, H. and Bauer, S.H., J. Am. Chem. Soc., 91 (1969) 10.

    Google Scholar 

  27. Carreira, A., Carter, R.O. and Durig, J.R., J. Chem. Phys., 59 (1973) 812.

    Google Scholar 

  28. Schiess, P. and Chia, M.L., Helv. Chim. Acta, 53 (1970) 485.

    Google Scholar 

  29. Schiess, P. and Radimerski, P., Angew. Chem., 84 (1972) 345.

    Google Scholar 

  30. Schiess, P. and Radimerski, P., Angew. Chem. Int. Ed. Engl., 11 (1972) 288.

    Google Scholar 

  31. Schiess, P. and Radimerski, P., Helv. Chim. Acta, 57 (1974) 2583.

    Google Scholar 

  32. Fang, K., Diss. Abstr. Int., B 46 (1985) 840.

    Google Scholar 

  33. Fang, K., Chem. Abstr., 104 (1986) 206689.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bringmann, G., Güssregen, S. & Busse, H. ‘ValleyScan’: A new two-bond drive technique for the calculation of potential energy surfaces with less computational effort. J Computer-Aided Mol Des 6, 505–512 (1992). https://doi.org/10.1007/BF00130400

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00130400

Key words

Navigation