Skip to main content
Log in

Puptrak 1.0 — a new semiautomated system for pupillometry with the Octopus perimeter: A preliminary report

  • Published:
Documenta Ophthalmologica Aims and scope Submit manuscript

Abstract

A provisional, semiautomated version of a system for automated testing of the afferent pupillary reflex with perimetric methods under controlled conditions is described. The target projected onto the perimeter cupola is used as the stimulus for triggering the pupillary response. In a modification to the Octopus 201, the pupil is illuminated by two IR LED diodes, while the pupillary responses are recorded by the onboard IR sensitive TV camera built into the perimetric unit. Measurements of the pupillary area as a function of time and stimulus luminance have been performed and have resulted in consistent results. Here, one perimetric program, working with stimuli above the threshold for the afferent pupillary light reflex is described. The present setup works with system-specific software and standard hardware, the central data processing unit being a desk-top computer (IBM PC AT-03).

The mating of an automated pupillary measuring unit to an automated perimeter may open the door for a more widespread evaluation of the value and the clinical application range of pupillary perimetry and may be of interest in other areas of visual and clinical psychophysics. The shortcomings of the present system, in particular insufficient temporal resolution and lack of full automation, are being removed at the present time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Harms H. Objektive Perimetrie. Ber dtsch ophthalmol Ges 1940; 53: 63–70.

    Google Scholar 

  2. Harms H. Grundlagen, Methodik und Bedeutung der Pupillenperimetrie für die Physiologie und Pathologie des Sehorgans. Graefes Arch Ophthalmol 1949; 149: 1–68.

    Google Scholar 

  3. Harms H. Entwiklungsmöglichkeiten der Perimetrie. Graefe's Arch Ophthalmol 1950; 150: 28–57.

    Google Scholar 

  4. Harms H. Hemianopische Pupillenstarre. Klin Mbl Augenheilk 1951; 118: 133–47.

    Google Scholar 

  5. Harms H. Die Bedeutung einer einheitlichen Prüfung aller Sehfunktionen. Ber dtsch Ophthalmol Ges 1960; 63: 181–5.

    Google Scholar 

  6. Harms H, Aulhorn E, Ksinsik R. Die Ergebnisse pupillomotorischer Perimetrie bei Stirnhirnverletzten und die Vorstellung über den Verlauf der Lichtreflexbahn. In: Die normale und die gestörte Pupillenbewegung. E Dodt and KE Schrader eds. München: JF Bergmann. 1973; 72–82.

    Google Scholar 

  7. Campbell FW, Robson JG, Westheimer G. Fluctuations of accommodation under steady viewing conditions. J Physiol London 1959; 145: 579.

    Google Scholar 

  8. Alexandridis E, Krastel H. Ein tragbares Infrarot - Reflex Pupillometer. Ber Dtsch Ophthalmol Ges 1971; 71: 652–4.

    Google Scholar 

  9. Dodt E, Alexandridis E. Electroretinography and pupillography as supplementary tools in the evaluation of retinal function in man. 6th ISCERG Symposium. Leipzig: G Thieme. 1968; 459–66.

    Google Scholar 

  10. Alexandridis E. Pupillographie: Anwendungsmöglichkeiten als objektive Untersuchung- smethode der Netzhautsinnesfunktion. Heidelberg: Alfred Hüttig. 1971

    Google Scholar 

  11. Harms H. Möglichkeiten und Grenzen der pupillometrischen Perimetrie. Klin Mbl Augenheilk 1956; 129: 518–34.

    Google Scholar 

  12. Fankhauser F, Häberlin H. Dynamic range and stray light. Doc Ophthalmol 1980; 50: 143–67.

    Google Scholar 

  13. Alexandridis E. Lichtsinn und Pupillenreaktion In: Die normale und die gestörte Pupillen- bewegung. E Dodt and KE Schrader (eds) JF Bergmann München 1973; pp 58–71.

    Google Scholar 

  14. Schweitzer NMJ. Threshold measurements on the light reflex of the pupil in the dark adapted eye. Doc Ophthalmol 1956; 10: 1–78.

    Google Scholar 

  15. Schweitzer NMJ, Bouman MA. Differential threshold measurements on the light reflex of the human pupil. Arch Ophthalmol 1958; 59: 514–50.

    Google Scholar 

  16. Barbieri A. El campo visual luminoso y el reflejo pupilar. Arch Oftalmol B Air 1929; 4: 618–57.

    Google Scholar 

  17. Campos E. Threshold pupillary reflexes and their application to pupilloperimetry. I. The pupillary light reflex. Boll Oculist Ital 1974; 53: 289–309.

    Google Scholar 

  18. Reuther R, Alexandridis E, Krastel H. Pupillenreflexstörungen bei Infarkten der Arteria cerebri posterior. Arch Psychiatr Nervenkr 1981; 229: 249–257.

    Google Scholar 

  19. Reuther R, Krastel H, Alexandridis E. Pupillenreflexstörungen bei Infarkten der Arteria cerebri posterior. Arch Psychiatr Nervenkr 1981; 229: 259–66.

    Google Scholar 

  20. Cibis GW, Campos EC, Aulhorn E. Pupillary hemiakinesia in suprageniculate lesions. Arch Ophthalmol 1975; 93: 1322–27.

    Google Scholar 

  21. Ganka R, Shoin I. Pupillary reflex: Perimetry for children and unconscious patients. Jap J Clin Ophthalmol 1970; 24: 517–23.

    Google Scholar 

  22. Thompson HS, Montague P, Cox TA, Corbett J. The relationship between visual acuity pupillary defect and visual field loss. Am J Ophthalmol 1982; 93: 681–88.

    Google Scholar 

  23. Aoyama T. Pupillographic perimetry. Acta Soc Ophthalmol Jap 1975; 79: 1247–56.

    Google Scholar 

  24. Bresky RH, Charles S. Pupil motor perimetry. Am J Ophthalmol 1969; 68: 108–112.

    Google Scholar 

  25. Körner F, Teuber HL. Visual field defects after missile injuries to the geniculo-striate pathway in man. Exp Brain Res 1973; 18: 88–113.

    Google Scholar 

  26. Johnson LN, Hill RA, Bartholomew MJ. Correlation of afferent pupillary defect with visual field loss on automated perimetry. Ophthalmology 1988; 95: 1649–55.

    Google Scholar 

  27. Brown RH, Zilis JD, Lynch MG, Sanborn GE. The afferent pupillary defect in asymetric glaucoma. Arch Ophthalmol 1987; 105: 1540–3.

    Google Scholar 

  28. Kohn AN, Moss AP, Podos SM. Relative afferent pupillary defects in glaucoma without characteristic field loss. Arch Ophthalmol 1979; 97: 294–6.

    Google Scholar 

  29. Prywes AS. Unilateral afferent pupillary defects in asymmetric glaucoma. 1976; 94: 1286–8.

    Google Scholar 

  30. Levantin P. Pulillary escape in diseases of the retina or optic nerve. Arch Ophthalmol 1959; 62: 768–79.

    Google Scholar 

  31. Levantin P, Prasloski PF, Collen MF. The swinging flashlighyt test in multiphasic screening for eye disease. Can J Ophthalmol 1973; 8: 356–60.

    Google Scholar 

  32. Miller S, Thompson HS. Pupil cycle time in optic neuritis. Am J Ophthalmol 1978; 85: 635–42.

    Google Scholar 

  33. Thompson HS, Corbett JJ, Cox TA. How to measure the relative afferent pupillary defect. Surv Ophthalmol 1981; 26: 39–42.

    Google Scholar 

  34. Reulen JP, Marcus JT, Koops D, De Vries FR, Tiesinga G, Boshuizen K, Bos JE. Precise recording of eye movements: the IRIS technique. Part 1. Med & Biol Eng & Comput 1988; 26: 20–6.

    Google Scholar 

  35. Reulen JPH, Marcus JT, Van Gilst MJ, Koops D, Bos JE, Tiesinga G, De Vries FR, Boshuizen K. Stimulation and recording of dynamic pupillary reflex: the IRIS technique. Part 2. Med & Biol Eng & Comp 1988; 26: 27–32.

    Google Scholar 

  36. Barber JL, Thomson WD, Forsyth PM. A new system for the simultaneous measurement of pupil size and two - dimensional eye movement. Clin Vision Sci 1987; 2: 131–42.

    Google Scholar 

  37. Cüppers C, Graff TH. Ueber ein neues Gerät zur stetigen Beobachtung und Aufzeichnung des normalen und pathologischen Pupillenreflexes. Klin Mbl Augenheilk 1951; 119: 189–92.

    Google Scholar 

  38. Schultes N, Doepfer Baldauf H, Mertz M. Verarbeitung von Bildsequenzen bei der ortsauflösenden Pupillographie. In: Angewandte Szenenanalyse. DAGM Symposium, Karlsruhe, JP Foith (ed) Springer Berlin Heidelberg New York. 1979; pp 289–92.

    Google Scholar 

  39. Mertz M, Roggenkämpfer P. Ein bildanalytisches Verfahren zur Messung der Pupil- lengrösse In: Die normale und gestörte Pupillenbewegung. E Dodt and KE Schrader, eds, München: JF Bergmann. 1973; 97–103.

    Google Scholar 

  40. Löwenstein O, Löwenfeld ID. Electronic Pupillography. Arch Ophthalmol 1958; 59: 352–63.

    Google Scholar 

  41. Castenholz A. Eine neue Methode zur Beobachtung und Registrierung der Pupillen- bewegungen (Pupillo - Kymographie) im Infrarotlicht. Graefe's Arch Ophtahlmol 1968; 175: 100–10.

    Google Scholar 

  42. Ishikawa S, Naito M, Inaba K. A new videopupillography. Ophthalmologica 1970; 160: 248–59.

    Google Scholar 

  43. Smith SA, Smith SE. Reduced pupillary light reflexes in diabetic autonomous neuropathy. Diabetologica 1983; 24: 330–2.

    Google Scholar 

  44. Kador PF, Kinoshita JH, Terubayashi H, Akagi Y. Diabetic changes of pupillary reaction and iridial pathology. Acta Soc Ophthalmol Jap 1988; 92: 484–8.

    Google Scholar 

  45. Bischoff A. Die diabetische Polyneuropathie. Thieme, 1963; Stuttgart.

  46. Bonkilo A. Relation between neuritis and the clinical background in diabetes mellitus. Arch Intern Med 1950; 85: 944–54.

    Google Scholar 

  47. Friedmann SA, Friedberg R, Podolak E, Bedell RH. Pupillary abnormalities in diabetic neuropathy. Ann Intrn Med 1967; 67: 977–83.

    Google Scholar 

  48. Fujii T, Ishikawa Uga S. Ultrastructure of the iris muscle in diabetes mellitus. Ophthal- mologica 1977; 160: 248–59.

    Google Scholar 

  49. Gliem H. Pupillomotorische Veränderungen bei Diabetikern. Acta Ophthalmol 1971; 49: 936–55.

    Google Scholar 

  50. Hreidarsson AB. Pupil motility in long term diabetes. Diabetologica 17: 145–50.

  51. Martin MM. Diabetic neuropathy. A clinical study of 150 cases. Brain 1953; 76: 594–624.

    Google Scholar 

  52. Ohrt V. Diabetic iridopathy. Universitetsvorlaget J Aarhus Denmark.

  53. Rundles RW. Diabetic neuropathy; general review with report of 125 cases. Medicine (Baltimore) 1945; 24: 111–60.

    Google Scholar 

  54. Alexandridis E. 1985. The Pupil Springer Verlag Berlin.

  55. Kase M, Nagata R, Yoshida A, Hanada I. Pupillary light reflex in amblyopia. Invest Ophthalmol Vis Sci 1984; 25: 467–71.

    Google Scholar 

  56. Bos JE. Clinical quantitative pupilometry. Neuroophthalmology 1988; 8: 299–305.

    Google Scholar 

  57. Bouma H. Receptive systems mediating certain light reactors of the puil of the human eye. Philips Rep 20 Suppl 1965; No. 5.

  58. Borgmann H. Elektronische Pupillographie in der klinischen Diagnostik. In: die normale und die gestörte Pupillenbewegung. E Dodt and KE Schrader, eds, München: JF Bergmann. 1973; 83–8.

    Google Scholar 

  59. Spring KH, Stiles WS. Variation of pupil size with change in the angle at which the light stimulus strikes the retina. Brit J Ophthalmol 1948; 32: 340–6.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fankhauser, F., Flammer, J. Puptrak 1.0 — a new semiautomated system for pupillometry with the Octopus perimeter: A preliminary report. Doc Ophthalmol 73, 235–248 (1989). https://doi.org/10.1007/BF00155093

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00155093

Key words

Navigation