Skip to main content
Log in

The ant's path integration system: a neural architecture

  • Original Papers
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

A model is developed by which path integration as observed in many animal species could be implemented neurobiologically. The proposed architecture is able to describe the navigation behaviour of Cataglyphis ants, and that of other social insects, at the level of interacting neurons. The basic idea of this architecture is the concept of activity patterns travelling along neural chains. Although experimental evidence has yet to be provided, this concept seems biologically plausible and not limited to the navigation problem. Neural chains are able to represent variables by activity patterns with high accuracy and temporal stability. Moreover, they are able to integrate incremental signals with high precision. Cyclical chains of neurons show superior performance as soon as cyclical variables are to be represented and integrated. Finally, representation of cyclical variables by travelling activity peaks allows simple approximations of goniometric functions as they are used in path integration systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Benhamou S, Sauve JP, Bovet P (1990) Spatial memory in large-scale movements: efficiency and limitation of the egocentric coding process. J Theor Biol 145:1–12

    Google Scholar 

  • Bisetzky AR (1957) Die Tänze der Bienen nach einem Fussweg zum Futterplatz. Z Vergl Physiol 40:264–288

    Google Scholar 

  • Collett TS, Dillmann E, Giger A, Wehner R (1992) Visual landmarks and route following in desert ants. J Comp Physiol [A] 170: 435–442

    Google Scholar 

  • Eckmiller R (1987) Computational model of the motor program generator for pursuit. J Neurosci Methods 21:127–138

    Google Scholar 

  • French AS, Stein RB (1970) A flexible neural analog using integrated circuits. IEEE Trans Biomed Eng 17:248–253

    Google Scholar 

  • Gallistel CR (1990) The organization of learning. MIT Press, Cambridge, Mass

    Google Scholar 

  • Görner P (1958) Die optische und kinästhetische Orientierung der Trichterspinne Agelena labyrinthica. Z Vergl Physiol 41:111–153

    Google Scholar 

  • Görner P, Claas B (1985) Homing behaviour and orientation in the funnel-web spider, Agelena labyrinthica. In: Barth FG (eds) Neurobiology of arachnids. Springer, Berlin Heidelberg New York, pp 275–297

    Google Scholar 

  • Gould JL (1986) The locale map of honey bees: do insects have cognitive maps? Science 232:861–863

    Google Scholar 

  • Hartmann G (1992) Motion induced transformations of spatial representations: mapping 3D information onto 2D. Neural Networks 5:823–834

    Google Scholar 

  • Jander R (1957) Die optische Richtungsorientierung der Roten Waldameise (Formica Rufa). Z Vergl Physiol 40:162–238

    Google Scholar 

  • Lindauer M (1963) Kompassorientierung. Ergeh Biol 26:158–181

    Google Scholar 

  • Michel B, Wehner R (1995) Phase-specific activation of landmark memories during homeward-bound vector navigation in desert ants, Cataglyphis fortis. Proc Neurobiol Conf Göttingen 23(1):41

    Google Scholar 

  • Mittelstaedt H (1962) Control systems of orientation in insects. Annu Rev Entomol 7:177–198

    Google Scholar 

  • Mittelstaedt H (1985) Analytical cybernetics of spider navigation. In: Barth FG (eds) Neurobiology of arachnids. Springer, Berlin Heidelberg New York, pp 298–316

    Google Scholar 

  • Mittelstaedt ML, Mittelstaedt H (1973) Mechanismen der Orientierung ohne richtende Aussenreize. Fortschr Zool 21:46–58

    Google Scholar 

  • Mittelstaedt ML, Mittelstaedt H (1980) Homing by path integration in a mammal. Naturwissenschaften 67:566

    Google Scholar 

  • Müller M (1989) Mechanismus der Wegintegration bei Cataglyphis fortis (Hymenoptera, Insecta). PhD thesis, University of Zürich

  • Müller M, Wehner R (1988) Path integration in desert ants, Cataglyphis fortis. Proc Natl Acad Sci USA 85:5287–5290

    Google Scholar 

  • O'Keefe J (1991) An allocentric spatial model for the hippocampal cognitive map. Hippocampus 1(3): 230–235

    Google Scholar 

  • Ronacher B, Manetsch D, Wehner R (1994) Self-induced optic flow cues influence the assessment of travel distance in the ant Cataglyphis fortis

  • Ronacher B, Wehner R (1995) Desert ants Cataglyphis fortis use selfinduced optic flow to measure distances travelled. J Comp Physiol A 177:21–27

    Google Scholar 

  • Saint-Paul Uv (1982) Do geese use path integration for walking home? In: Papi F, Walraff HG (eds) Avian navigation. Springer, Berlin Heidelberg New York, pp 298–307

    Google Scholar 

  • Sauve JP (1989) L'orientation spatiale: formalisation d'un modèle de mémorisation égocentrée et expérimentation chez l'homme. PhD thesis, University of Aix-Marseille

  • Schäfer M, Wehner R (1993) Loading does not affect measurement of walking distance in desert ants, Cataglyphisfortis. Verh Dtsch Zool Ges 86:270

    Google Scholar 

  • Seguinot V, Maurer R, Etienne AS (1993) Dead reckoning in a small mammal: the evaluation of distance. J Comp Physiol [A] 173:103–113

    Google Scholar 

  • Seyfarth EA, Hergenröder R, Ebbes H, Barth FG (1982) Idiothetic orientation of a wandering spider: compensation of detours and estimates of goal distance. Behav Ecol Sociobiol 11:139–148

    Google Scholar 

  • Touretzki T (1993) Neural representation of space using sinusoidal arrays. Neural Comput 5:869–884

    Google Scholar 

  • Visscher PK, Seeley TD (1982) Foraging strategy of honeybee colonies in a temperate deciduous forest. Ecology 63:1790–1801

    Google Scholar 

  • Wehner R (1981) Spatial vision in arthropods. In: Autrum H (eds) Handbook of sensory physiology, vol. VII/6c. Springer, Berlin Heidelberg New York, pp 287–616

    Google Scholar 

  • Wehner R (1982) Himmelsnavigation bei Insekten. Neurophysiologie und Verhalten. Neujahrsbl Naturforsch Ges Zürich 184:1–132

    Google Scholar 

  • Wehner R (1987a) Spatial organization of foraging behavior in individually searching desert ants, Cataglyphis (Sahara Desert) and Ocymyrmex (Namib Desert). In: Pasteels JM, Deneubourg J-L (eds) From individual to collective behavior in social insects. Birkhäuser, Basel, pp 15–42

    Google Scholar 

  • Wehner R (1987b) Matched filters': neural models of the external world. J Comp Physiol [A] 161:511–531

    Google Scholar 

  • Wehner R (1992) Arthropods. In: Papi F (eds) Animal Homing. Chapman and Hall, London, pp 45–144

    Google Scholar 

  • Wehner R (1994) The polarization-vision project: championing organismic biology. In: Schildberger K, Elsner N (eds) Neural basis of behavioural adaptation. G Fischer, Stuttgart, pp 103–143

    Google Scholar 

  • Wehner R, Harkness RD, Schmid-Hempel P (1983) Foraging strategies in individually searching ants, Cataglyphis bicolor (Hymenoptera: Formicidae). Akad Wiss Lit Mainz, Math Naturwiss Kl. Fischer, Stuttgart

    Google Scholar 

  • Wehner R, Menzel R (1990) Do insects have cognitive maps? Annu Rev Neurosci 13:403–414

    Google Scholar 

  • Wehner R, Srinivasan MV (1981) Searching behaviour of desert ants, genus Cataglyphis (Formicidae, Hymenoptera). J Comp Physiol 142:315–338

    Google Scholar 

  • Wehner R, Wehner S (1986) Path integration in desert ants: approaching a long standing puzzle in insect navigation. Monitore Zool Ital NS) 20:309–331

    Google Scholar 

  • Wehner R, Wehner S (1990) Insect navigation: use of maps or Ariadne's thread? Ethol Ecol Evol 2:27–48

    Google Scholar 

  • Wittmann T (1994) A neurobiologically plausible model of path integration. In: Proceedings of the 22nd Göttingen Neurobiology Conference, p 868

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hartmann, G., Wehner, R. The ant's path integration system: a neural architecture. Biol. Cybern. 73, 483–497 (1995). https://doi.org/10.1007/BF00199541

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00199541

Keywords

Navigation