Skip to main content
Log in

Calcification of the collagenous axial skeleton of Veretillum cynomorium pall. (cnidaria: pennatulacea)

  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Summary

The axial skeletal rod of Veretillum cynomorium consists of a fibrillar collagenous matrix calcified with calcite. The present paper describes ultrastructural and crystallographic details of its organization and deposition.

At the inferior end of the rod is a calcification gradient between the noncalcified tip and the rest of the axis. Initial mineral deposits, which are sometimes associated with cell debris, give rise to calcitic nodules which enlarge by the radial growth of several lobes. These nodules fuse and form the core of the axis. Subsequent increase in diameter of the rod involves the radial development of irregular columns of calcite which arise from the peripheral nodules. Mineral surfaces exhibit a distinctive microarchitecture which can be related to the predominantly c-axis parallel growth of the calcite. Particular attention is paid to the relationship between mineral and matrix. The collagen fibrils, embedded in the calcite but never impregnated with it, are not responsible for the initial nucleation of mineral. The crystallographic orientation of the calcite also appears to be independent of these fibrils.

Résumé

L'axe squelettique de Veretillum cynomorium se compose d'une matrice fibrillaire de nature collagène, minéralisée par de la calcite. Le présent article fournit des données ultrastructurales et cristallographiques quant à l'organisation de cette structure et au dépôt du minéral dans la matrice.

La pointe inférieure de l'axe constitue un gradient de calcification entre l'extrémité non minéralisée et le corps entièrement calcifié. Les dépôts initiaux de calcite, parfois associés à des débris cellulaires, donnent naissance à des nodules qui s'accroissent de façon rayonnée, par bourgeonnement de plusieurs lobes. Ces nodules fusionnent et forment le coeur de l'axe dont la croissance ultérieure en diamètre, se réalise par le développement de colonnes irrégulières de calcite à partir des nodules externes du coeur. Les surfaces minéralisées présentent une microarchitecture qui peut être reliée aux axes cristallographiques de la calcite. Les relations entre le minéral et la matrice ont particulièrement retenues notre attention. Les fibres de collagène, enrobées par la calcite et non imprégnées par elle, n'interviennent jamais comme initiateur de nucléation du minéral. L'orientation cristallographique ultérieure de la calcite est aussi totalement indépendante de la matrice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, H.C.: Matrix vesicles of cartilage and bone. In: The biochemistry and physiology of bone, 2nd ed., Vol. IV (G.H. Bourne, ed.), pp. 135–157. New York: Academic Press 1976

    Google Scholar 

  • Bayer, F.M.: Contributions to the nomenclature, systematics, and morphology of the Octocorallia. Proc. U.S. natn. Mus. 105, 207–220 (1955)

    Google Scholar 

  • Bellemo, S.: Ultrastructures in recent radial and granular calcareous foraminifera. Bull. geol. Instn. Univ. Upsala, N.S. 4, 117–122 (1974)

    Google Scholar 

  • Bouligand, Y.: Sur une catégorie de cellules très particulières chez les Gorgones (Coelentérés Octocoralliaires). Vie et Milieu 19, 59–69 (1968)

    Google Scholar 

  • Brice, J.C.: The growth of crystals from liquids. Amsterdam: North Holland Pub. Co. 1973

    Google Scholar 

  • Chia, F.S., Crawford, B.: Comparative fine structural studies of planulae and primary polyps of identical age of the sea pen Ptilosarcus gurneyi. J. Morph. 151, 131–158 (1977)

    Google Scholar 

  • Delage, Y., Hérouard, E.: Traité de Zoologie concrète. II. Les Coelentérés (Schleicher, ed.). Paris 1901

  • Franc, S., Huc, A., Chassagne, G.: Etude ultrastructurale et physicochimique de l'axe squelettique de Veretillum cynomorium Pall. (Cnidaire, Anthozoaire): Cellules, calcite, collagène. J. Microscopic 21, 93–110 (1974)

    Google Scholar 

  • Franc, S.: Phénomène de nucléation au cours de la calcification chez un Invertébré marin (Cnidaire). J. Microscopie Biol. Cell. 27, 11a (1976)

  • Goldberg, W.M.: Evidence of a sclerotized collagen from the skeleton of a gorgonian coral. Comp. Biochem. Physiol. 49B, 525–529 (1974)

    Google Scholar 

  • Goldberg, W.M.: Comparative study of the chemistry and structure of gorgonian and antipatharian coral skeletons. Mar. Biol. 35, 253–267 (1976)

    Google Scholar 

  • Jones, W.C.: Crystalline properties of spicules of Leucosolenia complicata. Quart. J. micr. Sci. 96, 129–149 (1955)

    Google Scholar 

  • Kitano, Y., Kanamori, N., Tokuyama, A.: Effects of organic matter on solubilities and crystal form of carbonates. Amer. Zool. 9, 681–688 (1969)

    Google Scholar 

  • Landis, W.J., Paine, M.C., Glimcher, M.J.: Electron microscopic observations of bone tissue prepared anhydrously in organic solvents. J. Ultrastruct. Res. 59, 1–30 (1977)

    Google Scholar 

  • Ledger, P.W., Franc, S.: Polymorphic collagen in an invertebrate (Cnidaria: Octocorallia). Coll. Intern. C.N.R.S. (Paris), (in press)

  • Ledger, P.W., Jones, W.C.: Spicule formation in the calcareous sponge Sycon ciliatum. Cell Tiss. Res. 181, 553–567 (1977)

    Google Scholar 

  • Lowenstam, H.A.: Coexisting calcites and aragonites from skeletal carbonates of marine organisms and their strontium and magnesium contents. In: Recent researches in the fields of hydrosphere, atmosphere and nuclear geochemistry (T. Miyake and T. Koyama, eds.). Tokyo: Maruzen Co. 1964

    Google Scholar 

  • Marks, M.H., Bear, R.S., Blake, C.H.: X-ray diffraction evidence of collagen-type protein fibres in the Echinodermata, Coelenterata and Porifera. J. exp. Zool. 111, 55–78 (1949)

    Google Scholar 

  • McCauley, J.W., Roy, R.: Controlled nucleation and crystal growth of various CaCO3 phases by the silica gel technique. Amer. Miner. 59, 947–963 (1974)

    Google Scholar 

  • Morse, H.W., Warren, C.H., Donnay, J.D.H.: Artificial spherulites and related aggregates. Amer. J. Sci. 23, 421–439 (1932)

    Google Scholar 

  • Pasteels, J.J.: Phosphatase acide et polarité golgienne dans les cellules absorbantes de la branchie de Mytilus edulis. Etude au microscope électronique. Histochemie 28, 296–304 (1971)

    Google Scholar 

  • Towe, K.M.: Invertebrate shell structure and the organic matrix concept. Biomineralization 4, 1–14 (1972)

    Google Scholar 

  • Towe, K.M., Berthold, W.-U., Appleman, D.E.: The crystallography of Patellina corrugata Williamson: a-axis preferred orientation. J. Foraminiferal Res. 7, 58–61 (1977)

    Google Scholar 

  • Travis, D.F., François, C.J., Bonar, L.C., Glimcher, M.J.: Comparative studies of the organic matrices of invertebrate mineralized tissues. J. Ultrastruct. Res. 18, 519–550 (1967)

    Google Scholar 

  • Urist, M.R.: Biochemistry of calcification. In: The biochemistry and physiology of bone, 2nd ed., Vol. IV (G.H. Bourne, ed.), pp. 1–59. New York: Academic Press 1976

    Google Scholar 

  • Wilbur, K.M.: Recent studies of invertebrate mineralization. In: The mechanisms of mineralization in the invertebrates and plants (N. Watabe and K.M. Wilbur, eds.), pp. 79–108. Univ. of South Carolina Press 1976

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ledger, P.W., Franc, S. Calcification of the collagenous axial skeleton of Veretillum cynomorium pall. (cnidaria: pennatulacea). Cell Tissue Res. 192, 249–266 (1978). https://doi.org/10.1007/BF00220743

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00220743

Key words

Navigation