Skip to main content
Log in

The encoder mechanism of receptor neurons

  • Published:
Kybernetik Aims and scope Submit manuscript

Zusammenfassung

Ausgehend von den elektrischen Vorgängen an der erregbaren Membran wird der Kodierungsprozeß untersucht. Eine Leitwert-Potential-Beziehung als Bedingung für die Impulsauslösung gestattet eine detaillierte Analyse bei verschiedenen Eingangssignalen. Bei der Ansteuerung mit einem Leitwert erfolgt die Sättigung der Umsetzungskennlinie des Kodierers erheblich früher als bei Stromeingang. Auch das Phänomen des over-stretch wird vom Modell erklärt. Zur Kleinsignalanalyse wird die Theorie der Systeme mit zeitvariablen Parametern angewendet. Die Übertragungsfunktion des Kodierers setzt sich in vielen Fällen additiv aus denen mehrerer Leckstrom-Integratoren mit unterschiedlichen Zeitkonstanten zusammen. Auch die teilweise beobachtete Abhängigkeit der Parameter von der Trägerfrequenz wird modellmäßig erfaßt. Die Adaptationsvorgänge im Kodierer beruhen auf einer intracellulären Anhäufung von Natriumionen während der Impulsabgabe. Die Aktivierung der Ionenpumpe bewirkt einen zusätzlichen Stromfluß, wodurch sich die abgegebene Impulsfrequenz verringert. Bei größeren Ansteuerungen trägt die durch langsame Kalium- und Natriuminaktivierung auftretende Verschiebung der Impulsauslösecharakteristik ebenfalls zur Adaptation bei. Die Betrachtungen, obwohl allgemeingültig für den biologischen Mechanismus der Impulsentstehung und Kodierung, wurden im Rahmen der Arbeit nur auf experimentelle Befunde an Receptorneuronen begrenzt. Für das Motoneuron und Neuronen in verarbeitenden Schichten müssen zusätzlich die Summation synaptischer Vorgänge und statistische Verknüpfungen zwischen Eingangs- und Ausgangssignal berücksichtigt werden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Adelman,W.,Jr., Palti,Y.: The effects of external potassium and long duration voltage conditioning on the amplitude of sodium currents in the giant axon of the squid, Loligo pealei. J. Gen. Physiol. 54, 589–606 (1969).

    Google Scholar 

  • Agin,D.: Hodgkin-Huxley equations: logarithmic relation between membrane current and frequency of repetitive activity. Nature (Lond.) 201, 625–626 (1964).

    Google Scholar 

  • Andronow,A.A., Witt,A.A., Chaikin,S.E.: Theorie der Schwingungen. Teil I. Berlin: Akademie-Verlag 1965.

    Google Scholar 

  • Bayly,E.J.: Spectral analysis of pulse frequency modulation in the nervous system. IEEE Trans. Biomed. Engng. 15, 257–265 (1968).

    Google Scholar 

  • Brown,M.C., Stein,R.B.: Quantitative studies on the slowly adapting stretch receptor of the crayfish. Kybernetik 3, 175–185 (1966).

    Google Scholar 

  • Chandler,W.K., Fitzhugh,R., Cole,K.S.: Theoretical stability properties of a space-clamped axon. Biophys. J. 2, 105–127 (1962).

    Google Scholar 

  • Chaplain,R.A., Michaelis,B., Coenen,R.: Systems analysis of biological receptors. I. A quantitative description of the input-output characteristics of the slowly adapting stretch receptor of the crayfish. Kybernetik 9, 85–95 (1971).

    Google Scholar 

  • Cooley,J.W., Dodge,F.A.: Digital computer solutions for excitation and propagation of the nerve impulse. Biophys. J. 6, 583–599 (1966).

    Google Scholar 

  • Connor,J.A., Stevens,C.F.: Prediction of repetitive firing behaviour from voltage clamp data on an isolated neurone soma. J. Physiol. (Lond.) 213, 31–53 (1971).

    Google Scholar 

  • Dodge,F.A.: On the neural mechanisms of visual transduction in the eye of Limulus. In: Systems analysis approach to neurophysiological problems, 102–120 (Terzuolo,C.A., ed.). Minnesota: Brainerd 1969.

    Google Scholar 

  • Döving,K.B.: Studies of the relation between the frog's electroolfactogram and single unit activity in the olfactory bulb. Acta physiol. scand. 60, 150–163 (1964).

    Google Scholar 

  • Eccles,J.C.: The physiology of nerve cells. Baltimore: The John Hopkins Press 1957.

    Google Scholar 

  • Fernald,R.D.: A neuron with spatially distributed synaptic input. Biophys. J. 11, 323–340 (1971).

    Google Scholar 

  • Firth,D.R.: Interspike interval fluctuations in the crayfish stretch receptor. Biophys. J. 6, 201–215 (1966).

    Google Scholar 

  • Fitzhugh,R.: Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1, 445–466 (1961).

    Google Scholar 

  • French,A.S., Holden,A.V.: Alias-free sampling of neuronal spike trains. Kybernetik 8, 165–171 (1971).

    Google Scholar 

  • French,A.S., Stein,R.B.: A flexible neuronal analog using integrated circuits. IEEE Trans. Bio-Med. Engng. 17, 248–253 (1970).

    Google Scholar 

  • Fuortes,M.G.F.: Initiation of impulses in the visual cells of Limulus. J. Physiol. Lond., 148, 14–28 (1959).

    Google Scholar 

  • Fuortes,M.G.F., Mantegazzini,F.: Interpretation of the repetitive firing of nerve cells. J. Gen. Physiol. 45, 1163–1179 (1962).

    Google Scholar 

  • Granit,R., Kernell,D., Shortess,G.K.: Quantitative aspects of repetitive firing of mammalian motoneurones caused by injected currents. J. Physiol. Lond. 168, 911–931 (1963).

    Google Scholar 

  • Hodgkin,A.L.: The local electric changes associated with repetitive action in a non-medullated axon. J. Physiol. Lond. 107, 165–181 (1948).

    Google Scholar 

  • Hodgkin,A.L., Huxley,A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. Lond. 117, 500–544 (1952).

    Google Scholar 

  • Kamke,E.: Differentialgleichungen, Lösungsmethoden und Lösungen. Leipzig: Akadem. Verlagsges. Geest & Portig KG 1967.

    Google Scholar 

  • Katz,B.: Depolarization of sensory terminals and the initiation of impulses in the muscle spindle. J. Physiol. Lond. 111, 261–282 (1950).

    Google Scholar 

  • Kernell,D.: The repetitive impulse discharge of a simple neurone model compared to that of spinal motoneurones. Brain Research 11, 685–687 (1968).

    Google Scholar 

  • Knight,B.W.: Dynamics of encoding in a population of neurons. J. Gen. Physiol. 59, 734–766 (1972).

    Google Scholar 

  • Lewis,E.R.: An electronic model of neuroelectric point processes. Kybernetik 5, 30–46 (1968).

    Google Scholar 

  • Loewenstein,W.R., Terzuolo,C.A., Washizu,Y.: Separation of transducer and impulse-generating processes in sensory receptors. Science 142, 1180–1181 (1963).

    Google Scholar 

  • McKean,T.A., Poppele,R.E., Rosenthal,N.P., Terzuolo,C.A.: The biologically relevant parameter in nerve impulse trains. Kybernetik 6, 168–170 (1970).

    Google Scholar 

  • Michaelis,B., Chaplain,R.A.: An asymptotic solution for the steady-state electrodiffusion equations. Math. Biosciences 1972 (in press).

  • Michaelis,B., Chaplain,R.A.: A systems theoretical approach to biological membranes. I. Formulation of a generalized model for electrical phenomena in excitable membranes. Kybernetik 11, 119–132 (1973).

    Google Scholar 

  • Moore,G.P., Perkel,D.H., Segundo,J.P.: Statistical analysis and functional interpretation of neuronal spike data. Ann. Rev. Physiol. 28, 493–522 (1966).

    Google Scholar 

  • Mountcastle,V.B., Talbot,W.H., Kornhuber,H.H.: The neural transformation of mechanical stimuli delivered to the monkey's hand. In: Ciba Found. Symp.: Touch, heat and pain. Boston: Little-Brown 1966.

    Google Scholar 

  • Nakajima,S., Onodera,K.: Membrane properties of the stretch receptor neurones of crayfish with particular reference to mechanisms of sensory adaptation. J. Physiol. Lond. 200, 161–185 (1969).

    Google Scholar 

  • Noble,D., Stein,R. B.: The threshold conditions for initiating action potentials in excitable cells. J. Physiol. Lond. 187, 129–162 (1966).

    Google Scholar 

  • Ottoson,D., McReynolds,J.S., Shepherd,G.M.: Sensitivity of isolated frog muscle spindle during and after stretching. J. Neurophysiol. 32, 24–34 (1969).

    Google Scholar 

  • Ottoson,D., Shepherd,G.M.: Steps in impulse generation in the isolated muscle spindle. Acta physiol. scand. 79, 423–430 (1970).

    Google Scholar 

  • Poppele,R.E., Chen,W.J.: Repetitive firing of mammalian muscle spindle. J. Neurophysiol. 35, 357–364 (1972).

    Google Scholar 

  • Rescigno,A., Stein,R.B., Purple,R.L., Poppele,R.E.: A neuronal model for the discharge patterns produced by cyclic inputs. Bull. Math. Biophys. 32, 337–353 (1970).

    Google Scholar 

  • Sabah,N.H., Spangler,R.A.: Repetitive response of the Hodgkin-Huxley model for the squid giant axon. J. Theor. Biol. 29, 155–171 (1970).

    Google Scholar 

  • Sokolove,P.G., Cooke,I.M.: Inhibition of impulse activity in a sensory neuron by an electrogenic pump. J. Gen. Physiol. 57, 125–163 (1971).

    Google Scholar 

  • Ten Hoopen,M.: Probabilistic firing of neurons considered as a first passage problem. Biophys. J. 6, 435–451 (1966).

    Google Scholar 

  • Terzuolo,C.A., Washizu,Y.: Relation between stimulus strength, generator potential and impulse frequency in stretch receptor of crustacea. J. Neurophysiol. 25, 56–66 (1962).

    Google Scholar 

  • Terzuolo,C.A., Bayly,E.J.: Data transmission between neurons. Kybernetik 5, 83–85 (1968).

    Google Scholar 

  • Terzuolo,C.A., Knox,C.K.: Static and dynamic behaviour of the slowly adapting stretch receptor organ of Crustacea. In: Handbook of Sensory Physiology. Vol. 1, 500–522. Berlin-Heidelberg-New York: Springer 1971.

    Google Scholar 

  • Terzuolo,C.A., Purple,R.L., Bayly,E., Handelman,E.: Postsynaptic inhibition — its action upon the transducer and encoder systems of neurons. In: Structure and functions of inhibitory neural mechanisms. Proceedings of the Fourth International Meeting of Neurobiologists. Stockholm, Sept. 1966. Oxford and New York: Pergamon Press, 1968.

    Google Scholar 

  • Tomita,T., Wright,E.P.: A study of the crustacean axon repetitive response. I. The effect of membrane potential and resistance. J. cell. comp. Physiol. 65, 195–210 (1965).

    Google Scholar 

  • Wunsch,G.: Systemtheorie der Informationstechnik. Leipzig: Akademische Verlagsges. Geest & Portig KG, 1971.

    Google Scholar 

  • Zadeh,L.A., Desoer,C.A.: In: Linear system theory. New York: McGraw-Hill, 1963.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Michaelis, B., Chaplain, R.A. The encoder mechanism of receptor neurons. Kybernetik 13, 6–23 (1973). https://doi.org/10.1007/BF00289106

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00289106

Keywords

Navigation