Skip to main content
Log in

Characterization of a second nuclear gene, AEP1, required for expression of the mitochondrial OLI1 gene in Saccharomyces cerevisiae

  • Original Articles
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

Due to mutation in a single nuclear locus, AEP1, the temperature-conditional pet mutant ts1860 of Saccharomyces cerevisiae fails to synthesize mitochondrial ATP synthase subunit 9 at the restrictive temperature of 36°C. The presence at this temperature of near-normal levels of the cognate oli1 mRNA in mutant ts1860 indicates that, as previously shown, the product of the AEP1 gene is required for translation of the mitochondrial oli1 transcript. In this study the AEP1 gene has been cloned from a wild-type yeast genomic library by genetic complementation of a temperature-conditional aep1 strain at the restrictive temperature. A 2,330-bp genomic fragment which restores subunit 9 synthesis in aep1 mutant strains was characterized. This fragment encoded five open reading frames: the longest of these, at 1,554 nucleotides, was identified as the AEP1 gene, since disruption of this reading frame generated a non-conditional pet strain unable to synthesize subunit 9. The predicted product of AEP1 is a basic, hydrophilic protein of 59,571 Da which possesses a putative mitochondrial address sequence. Hybridization studies with AEP1-specific probes indicate that the gene is located on chromosome XIII and produces several poly(A)+ transcripts ranging in size from 0.9 to 2.7 kb. None of the identified reading frames share significant homologies with entries of several data bases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ackerman SH, Tzagoloff A (1990a) Proc Natl Acad Sci USA 87:4986–4990

    Google Scholar 

  • Ackerman SH, Tzagoloff A (1990b) J Biol Chem 265:9952–9959

    Google Scholar 

  • Ackerman SH, Gatti DL, Gellefors P, Douglas MG, Tzagoloff A (1991) FEBS Lett 278:234–238

    Google Scholar 

  • Ackerman SH, Martin J, Tzagoloff A (1992) J Biol Chem 267:7386–7394

    Google Scholar 

  • Bennetzen JL, Hall BD (1982) J Biol Chem 257:3026–3031

    Google Scholar 

  • Bowman S, Ackerman SH, Griffiths DE, Tzagoloff A (1991) J Biol Chem 266:7517–7523

    Google Scholar 

  • Boy-Marcotte E, Jacquet M (1982) Gene 20:433–440

    Google Scholar 

  • Broach JR, Strathern JN, Hicks JB (1979) Gene 8:121–133

    Google Scholar 

  • Chamberlain JP (1979) Anal Biochem 98:132–135

    Google Scholar 

  • Cigan AM, Donahue TF (1987) Gene 59:1–18

    Google Scholar 

  • Costanzo MC, Fox TD (1988) Proc Natl Acad Sci USA 85:2677–2681

    Google Scholar 

  • Costanzo MC, Fox TD (1990) Annu Rev Genetics 24:91–113

    Google Scholar 

  • Costanzo MC, Mueller PP, Strick CA, Fox TD (1986) Mol Gen Genet 202:294–301

    Google Scholar 

  • Cox GB, Devenish RJ, Gibson F, Howitt SM, Nagley P (1992) In: Ernster L (ed) Molecular mechanisms in bioenergetics. Elsevier, Amsterdam, pp 283–315

    Google Scholar 

  • Davis RW, Thomas M, Camceron J, St. John TP, Scherer S, Padgett RA (1980) Methods Enzymol 65:404–411

    Google Scholar 

  • Dieckmann CL, Tzagoloff A (1983) Methods 97:355–361

    Google Scholar 

  • Dieckmann CL, Tzagoloff A (1985) J Biol Chem 260:1513–1520

    Google Scholar 

  • Finnegan PM, Payne MJ, Keramidaris E, Lukins HB (1991) Curr Genet 20:53–61

    Google Scholar 

  • Gavel Y, von Heijne G (1990) Protein Eng 4:33–37

    Google Scholar 

  • Grivell LA (1989) Eur J Biochem 182:477–493

    Google Scholar 

  • Haffter P, McMullin TW, Fox TD (1991) Genetics 127:319–326

    Google Scholar 

  • Hill JE, Myers AM, Koerner TJ, Tzagoloff A (1986) Yeast 2:163–167

    Google Scholar 

  • Klebe RS, Harriss JV, Sharp ZD, Douglas MG (1983) Gene 25:333–341

    Google Scholar 

  • Kunkel TA, Roberts JO, Zakour RA (1987) Methods Enzymol 154:367–382

    Google Scholar 

  • Kyte J, Doolittle RF (1982) J Mol Biol 157:105–132

    Google Scholar 

  • Laemmli UK (1970) Nature 227:680–685

    Google Scholar 

  • Lang B, Burger G, Doxiadis I, Thomas DY, Bandlow W, Kaudewitz F (1977) Anal Biochem 77:110–121

    Google Scholar 

  • Langford CJ, Gallwitz D (1983) Cell 33:519–527

    Google Scholar 

  • Langford CJ, Klinz FJ, Donath C, Gallwitz D (1984) Cell 36:645–653

    Google Scholar 

  • Loon APGM van, Eilers M, Baker A, Verner A (1988) J Cell Biochem 36:59–71

    Google Scholar 

  • Mayer SA, Dieckmann CL (1991) Mol Cell Biol 11:813–821

    Google Scholar 

  • Messing J (1983) Methods Enzymol 101:20–78

    Google Scholar 

  • Murphy M, Choo KB, Macreadie I, Marzuki S, Lukins HB, Nagley P, Linnane AW (1980) Arch Biochem Biophys 203:260–270

    Google Scholar 

  • Novick A, Szilard L (1950) Proc Natl Acad Sci USA 36:708–719

    Google Scholar 

  • Payne MJ, Schweizer E, Lukins HB (1991) Curr Genet 19:343–351

    Google Scholar 

  • Pelissier PP, Camougrand NM, Manon ST, Velours GM, Guerin MG (1992) J Biol Chem 267:2467–2473

    Google Scholar 

  • Poutre CG, Fox TD (1987) Genetics 115:637–647

    Google Scholar 

  • Proudlock JW, Haslam JM, Linnane AW (1971) J Bioenerg 2:327–349

    Google Scholar 

  • Rigaud G, Grange T, Pictet R (1987). Nucleic Acids Res 15:857

    Google Scholar 

  • Rothstein RJ (1983) Methods Enzymol 101:202–211

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular Cloning. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) Proc Natl Acad Sci USA 83:3688–3692

    Google Scholar 

  • Schulze M, Rodel G (1988) Mol Gen Genet 211:492–498

    Google Scholar 

  • Sherman F, Fink GR, Lawrence CW (1986) Methods in yeast genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  • Smooker PM (1987) PhD thesis, Monash University

  • Struhl K, Stinchcomb DT, Scherer S, Davis RW (1979) Proc Natl Acad Sci USA 76:1035–1039

    Google Scholar 

  • Southern EM (1975) J Mol Biol 98:503–517

    Google Scholar 

  • Sprague GF, Jensen R, Herskowitz I (1983) Cell 32:409–415

    Google Scholar 

  • Tzagoloff A, Dieckmann CL (1990) Microbiol Rev 4:211–225

    Google Scholar 

  • Vollrath D, Davis RW, Connelly C, Hieter P (1988) Proc Natl Acad Sci USA 85:6027–6031

    Google Scholar 

  • Yanisch-Perron C, Vieira J, Messing J (1985) Gene 33:103–119

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by R. J. Schweyen

Rights and permissions

Reprints and permissions

About this article

Cite this article

Payne, M.J., Finnegan, P.M., Smooker, P.M. et al. Characterization of a second nuclear gene, AEP1, required for expression of the mitochondrial OLI1 gene in Saccharomyces cerevisiae . Curr Genet 24, 126–135 (1993). https://doi.org/10.1007/BF00324676

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00324676

Key words

Navigation