Skip to main content
Log in

Origin and differentiation of Triassic dolerite magmas, North Carolina, USA

  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Ten dolerite dikes intruded into Triassic fault troughs in the Piedmont area of North Carolina have been analyzed for the contents of major elements plus selected trace elements. The average composition of the initial magma, as indicated by four chill margins for major elements and three for trace elements, is: SiO2, 48.6%; Al2O3, 16.9%; TiO2, 0.57%; Fe2O3, 3.30%; FeO, 6.72%; MgO, 10.59; CaO, 10.42%; Na2O, 2.03%; K2O, 0.20%; MnO, 0.20%; Rb, 2.6 ppm; Sr, 133 ppm; Zr, 46 ppm; Th, 0.4 ppm; and U, below detection limit of approximately 0.1 ppm. One large dike (BP) exhibits a Palisades-type of differentiation by crystal settling of olivine, and the comparatively thick JY dike shows development of micropegmatite toward the center; the smaller dikes, however, are relatively homogeneous across their width. Study of the relationship between SiO2 content and the ratio FeO+Fe2O3/MgO+ FeO+Fe2O3 indicates that most dikes crystallize under conditions of decreasing oxygen pressure, but the differentiation trend of the JY, RD, and RS dikes indicates either constant or increasing oxygen pressure during their evolution.

Statistical comparison of the composition of the initial dolerite magmas with a variety of basalt types around the world suggests that the North Carolina dolerites are far more similar to oceanic or oceanic margin tholeiites than to continental tholeiites. The North Carolina rocks are distinctly different from plateau basalts but are similar to the chill zones of the Precambrian Bushveld and Stillwater lopoliths. The comparatively low contents of Th, U, and Sr, plus the relatively high K/Rb ratio all support the possibility that the magmas for the North Carolina dolerites evolved in a dominantly oceanic environment. It seems distinctly possible that continental-type crust and mantle did not exist in the Appalachian Piedmont area in Triassic time, even after major orogeny and the concurrent formation of granitic intrusions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, J. A. S.: Laboratory γ-ray spectrometer for geochemioal studies. In: J. A. S. Adams and W. Lowder (eds.) The Natural Eadiation Environment, pp. 485–498. Chicago: Chicago Univ. Press 1964.

    Google Scholar 

  • Bailey, E. B., C. T. Clough, W. B. Wright, V. E. Richey, and G. V. Wilson: Tertiary and post-tertiary geology of Mull, Bock Aline and Oban. Geol. Survey Scotland Memoir, 445 p. (1924).

  • Baker, P. E., I. G. Gass, P. G. Harris, and R. W. Lemaitre: The volcanological report of the Royal Society Expedition to Tristan da Cunha. Phil. Trans. Roy. Soc. London, Ser. A 256, 439–576 (1964).

    Google Scholar 

  • Barth, T. F. W.: Geology and petrology of the Pribilof Islands, Alaska, U.S. Geol. Survey Bull. No. 1028-P, 160 p. (1956).

  • Benson, W. N.: Cainozoic petrographic provinces in New Zealand and their residual magmas. Am. J. Sci. 239, 537–552 (1941).

    Google Scholar 

  • Byers, P. M., Jr.: Petrology of three volcanic suites, Umnak and Bogoslof Islands, Aleutian Islands, Alaska. Bull. Geol. Soc. Am. 72, 93–128 (1961).

    Google Scholar 

  • Carmichael, I. S. E.: The petrology of Thingmuli, a Tertiary volcano in eastern Iceland. J. Petrology 5, 435–460 (1964).

    Google Scholar 

  • Chao, E. C. T., and M. Fleischer: Abundance of zirconium in igneous rocks. Proceed 21st Int. Geol. Congress (Norden) Pt. 1, 106–131 (1960).

  • Chayes, F.: A petrographic distinction between Cenozoic volcanics in and around the open ocean. J. Geophys. Research 69, 1573–1588 (1964).

    Google Scholar 

  • Chubb, L. V.: Geology of the Marquesas Islands. Bernice P. Bishop Museum Bull. 68, 71 p. (1930).

  • Cox, C. G., R. MacDonald, and G. Hornung: Geochemical and petrographic provinces in the Karroo basalts of southern Africa. Am. Mineralogist 52, 1451–1474 (1967).

    Google Scholar 

  • Edwards, A. B.: The Tertiary volcanic rocks of central Victoria. Quart. J. Geol. Soc. London 94, 243–318 (1938).

    Google Scholar 

  • —: Differentiation of the dolerites of Tasmania, I. J. Geology 50, 451–480 (1942).

    Google Scholar 

  • Engel, A. E. J., C. G. Engel, and R. G. Havens: Chemical characteristics of oceanic basalts and the upper mantle. Bull. Geol. Soc. Amer. 76, 719–734 (1965).

    Google Scholar 

  • Esenwein, P.: Zur Petrographie der Azoren. Z. Vulkanologie 12, 108–227 (1929).

    Google Scholar 

  • Flanagan, F. J.: U.S. Geological Survey silicate rock standards. Geochim. et Cosmochim. Acta 81, 289–308 (1967).

    Google Scholar 

  • Fleischer, M.: Summary of new data on rock samples G-1 and W-1, 1962–1965. Geochim. et Cosmochim Acta 29, 1263–1284 (1965).

    Google Scholar 

  • Fleisher, P. J.: Structural control of the igneous intrusions of the Durham Triassic Basin, N. C. Unpublished M. S. thesis, Univ. of N. Carolina, 37 p. (1963).

  • Gast, P. W.: Terrestrial ratio of potassium to rubidium and the composition of Earth's mantle. Science 147, 858–860 (1965).

    Google Scholar 

  • Goldich, S. S., C. O. Ingamells, N. H. Suhr, and D. H. Anderson: Analyses of silicate rock and mineral standards. Can. J. Earth Sci. 4, 747–755 (1968).

    Google Scholar 

  • Gunn, B. M.: Modal and element variation in Antarctic tholeiites. Geochim. et Cosmochim. Acta 30, 881–920 (1966).

    Google Scholar 

  • Hall, A. L.: The Bushveld igneous complex of the Central Transvaal. Geol. Survey South Africa Memoirs 28, 560 p. (1932).

  • Hedge, C. E.: Variations in radiogenic strontium found in volcanic rooks. J. Geophys. Research 71, 6119–6126 (1966).

    Google Scholar 

  • Heir, K. S., and J. L. Carter: Uranium, thorium, and potassium contents in basic rocks and their bearing on the nature of the upper mantle. In: J. A. S. Adams and W. Lowder (eds.) The Natural Radiation Environment, p. 63–86. Chicago: Chicago Univ. Press 1964.

    Google Scholar 

  • Hermes, O. Don: A quantitative petrographic study of dolerite in the Deep River Basin. Am. Mineralogist 49, 1718–1729 (1964).

    Google Scholar 

  • Hess, H. H.: Stillwater igneous complex, Montana. Geol.Soc.Amer.Mem.No.80, 230 p.(1960).

  • Hotz, P. E.: Petrology of granophyre in diabase near Dillsburg, Pennsylvania. Bull. Geol. Soc. Am. 64, 675–704 (1953).

    Google Scholar 

  • Justus, P. S.: Modal and textural zonation of diabase dikes, Deep River Basin, North Carolina. Unpublished M. S. Thesis, Univ. of North Carolina, 76 p. (1966).

  • King, P. B.: Systematic pattern of Triassic dikes in the Appalachian region. U.S. Geol. Survey Profess. Papers No. 424-B, B93-B95 (1961).

    Google Scholar 

  • Kuno, H.: Petrology of Hakone volcano and the adjacent areas, Japan. Bull. Geol. Soc. Am. 61, 957–1020 (1950).

    Google Scholar 

  • —: High-alumina basalt. J. Petrology I, 121–145 (1960).

    Google Scholar 

  • —: Lateral variation of basalt magma type across continental margins and island arcs. Bull. volcanol. 29, 195–222 (1966).

    Google Scholar 

  • —, K. Yamasaki, C. Iida, and K. Nagashima: Differentiation of Hawaiian Magmas. Japan. J. Geol. and Geography 28, 179–218 (1957).

    Google Scholar 

  • Lemaitre, R. W.: Petrology of volcanic rooks. Gough Island, South Atlantic. Bull. Geol. Soc. Am. 73, 1309–1340 (1962).

    Google Scholar 

  • Mac Donald, G. A., and T. Katsura: Chemical composition of Hawaiian lavas. J. Petrology 5, 82–133 (1964).

    Google Scholar 

  • Osborn, E. F.: Role of oxygen pressure in the crystallization and differentiation of basaltic magma. Am. J. Sci. 257, 609–647 (1959).

    Google Scholar 

  • —: Reaction series for subalkaline igneous rocks based on different oxygen pressure conditions. Am. Mineralogist 47, 211–226 (1962).

    Google Scholar 

  • Overstreet, V. W., H. Bell III, and H. J. Rose, Jr.: Recent lead-alpha age determinations on zircon from the Carolina Piedmont. U.S. Geol. Survey, Profess. Papers No. 424-B, B103-B107 (1961).

    Google Scholar 

  • Prinz, M.: The geochemistry of basaltic rocks: trace elements. In: H. Hess and A. Poldervaart (eds.), Basalts-Poldervaart treatise on rocks of basaltic composition 1, 271–323 (1967).

  • Randazzo, A. F.: The stratigraphy of the Wadesboro Triassic basin in North and South Carolina. Unpublished M. S. Thesis, Univ. of North Carolina, 53 p. (1965).

  • Reinemund, J. A.: Geology of the Deep River coal field, North Carolina: U. S. Geol. Survey, Profess. Papers No. 246, 159 p. (1955).

  • Rogers, J. J. W., and J. A. S. Adams: Thorium (Chapter 90), and Uranium (Chapter 92). In: K. H. Wededohl (ed.) Handbook of Geochemistry, Berlin-Heidelberg-New York: Springer (in press).

  • Schmidt, R. G.: Geology of Saipan, Mariana Islands; Part II B, Petrology of the volcanic rocks. U. S. Geol. Survey, Profess. Papers No. 280 B, 175 p. (1957).

  • Shapiro, L.: A spectrophotometric method for the determination of FeO in rocks: U.S. Geol. Survey Profess. Papers No. 400-B, 496–497 (1960).

    Google Scholar 

  • Singh, H.: Diabase intrusions of a portion of the Durham Triassic basin, North Carolina. Unpublished M. S. Thesis, Univ. of North Carolina, 23 p. (1963).

  • Sukheswala, R. N., and A. Poldervaart: Deccan basalts of the Bombay area, India. Bull. Geol. Soc. Am. 69, 1475–1494 (1958).

    Google Scholar 

  • Swe, W.: Structural and stratigraphic relationships along the northwestern border of the Wadesboro basin of North Carolina. Unpublished M. S. Thesis, Univ. of North Carolina, 64 p. (1963).

  • The Geochronicle: The age of the diabase dike, Massachusetts; the age of the diabase sheets of the Connecticut Valley, Massachusetts. Geochron. Laboratories, Inc. 3, Cambridge, Mass. (1964).

    Google Scholar 

  • Wager, L. R., and W. A. Deer: Geological investigations in East Greenland, Part III: The Petrology of the Skaergaard intrusion, Kandlerdlugssuaq, East Greenland. Medd. Grønland 105, No. 4, 325 p. (1939).

  • Walker, F.: Differentiation of the Palisade-diabase, New Jersey. Bull. Geol. Soc. Am. 51, 1059–1106 (1940).

    Google Scholar 

  • —, and A. Poldervaart: Karroo dolerites of the Union of South Africa Bull. Geol. Soc. Am. 60, 591–706 (1949).

    Google Scholar 

  • Waters, A. C.: Basalt magma types and their tectonic associations: Pacific Northwest of the United States. Am. Geophys. Union, Geophys. Mono. 6, 158–170 (1962).

    Google Scholar 

  • Williams, H.: The great eruption of Cosequina, Nicaragua, in 1835. Calif. Univ. Publ. in Geol. Sci. 29, No. 2, 45 p. (1952).

  • Yoder, H. S., Jr., and C. E. Tilley: Origin of basalt magmas: an experimental study of natural and synthetic rock systems. J. Petrology 3, 342–532 (1962).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ragland, P.C., Rogers, J.J.W. & Justus, P.S. Origin and differentiation of Triassic dolerite magmas, North Carolina, USA. Contr. Mineral. and Petrol. 20, 57–80 (1968). https://doi.org/10.1007/BF00371066

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00371066

Keywords

Navigation