Skip to main content
Log in

Mode of action of glyphosate in Candida maltosa

  • Original Papers
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The broad-spectrum herbicide glyphosate inhibits the growth of Candida maltosa and causes the accumulation of shikimic acid and shikimate-3-phosphate. Glyphosate is a potent inhibitor of three enzymes of aromatic amino acid biosynthesis in this yeast. In relation to tyrosine-sensitive 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase and dehydroquinate synthase, the inhibitory effect appears at concentrations in the mM range, but 5-enolpyruvylshikimate 3-phosphate (EPSP) synthase is inhibited by micromolar concentrations of glyphosate. Inhibition of partially purified EPSP synthase reaction by glyphosate is competitive with respect to phosphoenolpyruvate (PEP) with a K i -value of 12 μM. The app. K m for PEP is about 5-fold higher and was 62 μM. Furthermore, the presence of glyphosate leads to derepression of many amino acid biosynthetic enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DAHP:

3-deoxy-D-arabino-heptulosonate 7-phosphate

EPSP synthase:

5-enolpyruvylshikimate 3-phosphate synthase

PEP:

phosphoenolpyruvate

S-3-P:

shikimate-3-phosphate

References

  • Amrhein N, Schab J, Steinrücken HC (1980) The mode of action of the herbicide glyphosate. Naturwissenschaften 67:356–357

    Google Scholar 

  • Amrhein N, Deus B, Gehrke P, Holländer H, Schab J, Schulz A, Steinrücken HC (1981) Interference of glyphosate with the shikimate pathway. Proc Plant Growth Regul Soc Am 8:99–106

    Google Scholar 

  • Amrhein N, Johänning D, Schab J, Schulz A (1983) Biochemical basis for glyphosate-tolerance in a bacterium and a plant tissue culture. FEBS Lett 157:191–196

    Article  Google Scholar 

  • Bode R, Birnbaum D (1981) Aggregation und Trennbarkeit der Enzyme des Shikimat-Pathway bei Hefen. Z Allg Mikrobiol 21:417–422

    PubMed  Google Scholar 

  • Bode R, Casper P, Kunze G (1983) Auslösung einer allgemeinen Kontrolle der Aminosäurebiosynthese bei Candida spec. EH 15/D durch Amitrol. Biochem Physiol Pflanzen 178:457–468

    Google Scholar 

  • Bode R, Melo C, Birnbaum D (1984) Inhibition of tyrosine-sensitive 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase by glyphosate in Candida maltosa. FEMS Microbiol Lett 23:7–10

    Article  Google Scholar 

  • Boocock MR, Coggins JR (1983) Kinetics of 5-enolpyruvylshikimate-3-phosphate synthase inhibition by glyphosate. FEBS Lett 154:127–133

    Article  PubMed  Google Scholar 

  • Carsiotis M, Lacy AM (1965) Increased activity of tryptophan biosynthetic enzymes in histidine mutants of Neurospora crassa. J Bacteriol 89:1427–1477

    Google Scholar 

  • Gollub E, Zalkin H, Sprinson DB (1967) Correlation of gene and enzymes, and studies on regulation of the aromatic pathway in Salmonella. J Biol Chem 242:5323–5328

    PubMed  Google Scholar 

  • Lowry OH, Rosebrough NJ, Fall AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  Google Scholar 

  • Millican RC (1970) Assay of shikimic acid. In: Tabor H, Tabor CW (eds) Methods in Enzymology. Academic Press, New York London, vol 17A: 352–354

    Google Scholar 

  • Mousdale DM, Coggins JR (1984) Purification and properties of 5-enolpyruvylshikimate 3-phosphate synthase from seedlings of Pisum sativum L. Planta 160:78–83

    Google Scholar 

  • Niederberger P, Miozzari G, Hütter R (1981) Biological role of the general control of amino acid biosynthesis in Saccharomyces cerevisiae. Molec Cell Biol 1:584–593

    PubMed  Google Scholar 

  • Roisch U, Lingens F (1974) Effect of the herbicide N-phosphonomethylglycine on the biosynthesis of aromatic amino acids. Angew Chem 13:400

    Article  Google Scholar 

  • Roisch U, Lingens F (1980) Zum Wirkungsmechanismus des Herbizids N-(Phosphonomethyl)glycin: Einfluß von N-(Phosphonomethyl)glycin auf das Wachstum und auf die Enzyme der Aromatenbiosynthese von Escherichia coli. Hoppe-Seylers Z Physiol Chem 361:1049–1058

    PubMed  Google Scholar 

  • Rubin JL, Gaines CG, Jensen RA (1982) Enzymological basis for herbicidal action of glyphosate. Plant Physiol 70:833–839

    Google Scholar 

  • Steinrücken HC, Amrhein N (1980) The herbicide glyphosate is a potent inhibitor of 5-enolpyruvylshikimate 3-phosphate synthase. Biochem Biophys Res Commun 94:1207–1212

    PubMed  Google Scholar 

  • Tanaka A, Ohishi N, Fukui S (1967) Studies on the formation of vitamins and their function in hydrocarbon fermentation. Production of vitamin B6 by Candida albicans in hydrocarbon medium. J Ferment Technol 45:617–623

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bode, R., Melo, C. & Birnbaum, D. Mode of action of glyphosate in Candida maltosa . Arch. Microbiol. 140, 83–85 (1984). https://doi.org/10.1007/BF00409776

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00409776

Key words

Navigation