Skip to main content
Log in

A gradient extremal walking algorithm

  • Published:
Theoretica chimica acta Aims and scope Submit manuscript

Abstract

Gradient extremals define stream beds connecting stationary points on molecular potential energy surfaces. Using this concept we have developed an algorithm to determine transition states. We initiate walks at equilibrium geometries and follow the gradient extremals until a stationary point is reached. As an illustration we have investigated the mechanism for exchange of protons on carbon in methylenimine (H2C=NH) using a multi-reference self-consistent-field wave function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. See Jørgensen P, Simons J (1986) Geometrical derivatives of energy surfaces and molecular properties. Reidel, Dordrecht

    Google Scholar 

  2. McIver Jr JW, Komornicki A, (1972) J Am Chem Soc 94:2625

    Google Scholar 

  3. Komornicki A, Ishida K, Morokuma K, Ditchfield R, Conrad M (1977) Chem Phys Lett 45:595

    Google Scholar 

  4. Dupuis M, Spangler D, Wendolowski J (1980) Program QG01, Software Catalog Program

  5. Binkley JS, DeFrees MJ, Krishnan R, Whiteside RA, Schlegel BS, Fluder EM, Pople JA (1983) GAUSSIAN 82, Carnegie-Mellon University, Pittsburgh

    Google Scholar 

  6. Brandemark U, Siegbahn PEM, (1984) Theor Chim Acta 66:217

    Google Scholar 

  7. Head JD, Zerner MC (1985) Chem Phys Lett 122:264

    Google Scholar 

  8. Comeau DC, Zellmer RJ, Shavitt I (1986) In: Jørgensen P, Simons J (eds) Geometrical derivatives of energy surfaces and molecular properties.

  9. Cerjan CJ, Miller WH, (1981) J Chem Phys 75:2800

    Google Scholar 

  10. Simons J, Jørgensen P, Taylor H, Ozment J (1983) J Phys Chem 87:2745

    Google Scholar 

  11. Nguyen DT, Case DA (1985) J Phys Chem 89:4020

    Google Scholar 

  12. Banerjee A, Adams N, Simons J, Shepard R (1985) J Phys Chem 89:52

    Google Scholar 

  13. Jensen HJAa, Jørgensen P, Helgaker T (1986) J Chem Phys 85:3917

    Google Scholar 

  14. Hoffman DK, Nord RS, Ruedenberg K (1986) Theor Chim Acta 69:265

    Google Scholar 

  15. Pancir J (1975) Collect Czech Chem Commun 40:1112

    Google Scholar 

  16. Basilevsky MV, Shamov AG (1981) Chem Phys 60:347

    Google Scholar 

  17. Fletcher R (1980) Practical methods of optimization, vol 1. Wiley, New York

    Google Scholar 

  18. Lehn JM, Munsch B (1968) Theor Chim Acta 12:91

    Google Scholar 

  19. Pople JA, Raghavachari K, Frisch MJ, Binkley JS, Schleyer PvR (1983) J Am Chem Soc 105:6389

    Google Scholar 

  20. Jensen HJAa, Jørgensen P, Helgaker T (1987) J Am Chem Soc 109:2895

    Google Scholar 

  21. Tatewaki H (1985) J Comput Chem 6:237

    Google Scholar 

  22. Dunning Jr ThH (1970) J Chem Phys 53:2823

    Google Scholar 

  23. Huzinaga S (1965) J Chem Phys 42:1293

    Google Scholar 

  24. Jensen HJAa, Ågren H (1984) Chem Phys Lett 110:140 Jensen HJAa, Ågren H (1986) Chem Phys 104:229

    Google Scholar 

  25. Helgaker TU, Almlöf J, Jensen HJAa, Jørgensen P (1986) J Chem Phys 84:6266

    Google Scholar 

  26. Helgaker TU, Jensen HJAa, Jørgensen P (1986) J Chem Phys 84:6280

    Google Scholar 

  27. Botschwina P (1974) Chem Phys Lett 29:580

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jørgensen, P., Jensen, H.J.A. & Helgaker, T. A gradient extremal walking algorithm. Theoret. Chim. Acta 73, 55–65 (1988). https://doi.org/10.1007/BF00526650

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00526650

Key words

Navigation