Skip to main content
Log in

Glutamine synthetase activity, ammonia assimilation and control of nitrate reduction in the unicellular red algaCyanidium caldarium

  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Addition ofl-methionine-dl-sulphoximine to cells ofCyanidium caldarium brings about a loss of glutamine synthetase activity. Concomitantly ammonia assimilation is prevented.

Under physiological conditions nitrate reductase [NAD(P)H: nitrate oxidoreductase EC 1.6.6.2] is reversibly converted into an inactive enzyme upon addition of ammonia. In the presence of methionine sulphoximine, when glutamine synthetase activity is lost, nitrate reductase is no longer inactivated by ammonia. It is suggested that ammonia itself is not the actual effector of nitrate reductase inactivation.

Concomitantly with the failure of nitrate reductase to undergo ammonia-inactivation, in the presence of methionine sulphoximine nitrate reduction is an uncontrolled process, thus, in media with nitrate ammonia continues to be produced and excreted into the external medium at a constant rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

NR:

Nitrate reductase

GS:

Glutamine synthetase

GOGAT:

Glutamate syntase

MSX:

l-methionine-dl-sulphoximine

References

  • Gordon, J. K., Brill, W. J.: Derepression of nitrogenase synthesis in the presence of excess NH +4 . Biochem. Biophys. Res. Commun.59, 967–971 (1974)

    Google Scholar 

  • Lawrie, A. C., Codd, G. A., Stewart, W. D. P.: The incorporation of nitrogen into products of recent photosynthesis inAnabaena cylindrica Lemm. Arch. Microbiol.107, 15–24 (1976)

    Google Scholar 

  • Losada, M., Paneque, A., Aparicio, P. J., Vega, J. Ma, Cardenas, J., Herrera, J.: Inactivation and repression by ammonium of the nitrate reducing system inChlorella. Biochem. Biophys. Res. Commun.38, 1009–1015 (1970)

    Google Scholar 

  • Losada, M.: Metalloenzymes of the nitrate-reducing system. J. Mol. Catal.1, 245–264 (1975/76)

    Google Scholar 

  • Lowry, O. M., Rosebrough, N. J., Farr, A. L., Randall, R. J.: Protein measurement with the Folin phenol reagent. J. Biol. Chem.193, 265–275 (1951)

    Google Scholar 

  • Miflin, B. J., Lea, P. J.: The path of ammonia assimilation in the plant kingdom. Trends Biochem. Sci.1, 103–106 (1976)

    Google Scholar 

  • Rhodes, D., Rendon, G. A., Stewart, G. R.: The regulation of ammonia assimilating enzymes inLemna minor. Planta129, 203–210 (1976)

    Google Scholar 

  • Rigano, C.: Studies on nitrate reductase fromCyanidium caldarium. Arch. Mikrobiol.76, 265–276 (1971)

    Google Scholar 

  • Rigano, C., Violante, U.: Effect of nitrate, ammonia and nitrogen starvation on the regulation of nitrate reductase inCyanidium caldarium. Arch. Mikrobiol.90, 27–33 (1973)

    Google Scholar 

  • Rigano, C., Aliotta, G., Violante, U.: Reversible inactivation by ammonia of assimilatory nitrate reductase inCyanidium caldarium. Arch. Microbiol.99, 81–90 (1974a)

    Google Scholar 

  • Rigano, C., Aliotta, G., Violante, U.: Presence of high levels of nitrate reductase activity inCyanidium caldarium grown on glutamate as the sole nitrogen source. Plant Sci. Lett.2, 277–281 (1974b)

    Google Scholar 

  • Rigano, C., Aliotta, G., Di Martino Rigano, V.: Observation on enzymes of ammonia assimilation in two different strains ofCyanidium caldarium. Arch. Microbiol.104, 297–299 (1975)

    Google Scholar 

  • Rigano, C., Di Martino Rigano, V., Vona, V., Aliotta, G., Fuggi, A.: Inibizione della crescita diCyanidium caldarium da methionina solfossimmina e metionina solfone. Due inibitori della glutammina sintetasi. Rend. Accad. Naz. Lincei63, 141–148 (1977)

    Google Scholar 

  • Rigano, C., Di Martino Rigano, V., Vona, V., Fuggi, A., Aliotta, G.: Studies in vivo on the control by ammonia of nitrate reduction to nitrite in the unicellular algaCyanidium caldarium. Plant Sci. Lett.13, 301–307 (1978)

    Google Scholar 

  • Stevens, S. E., Jr., Van Baalen, C.: Control of nitrate reductase in a blue-green alga. The effects of inhibitors, blue light and ammonia. Arch. Biochem. Biophys.161, 146–152 (1974)

    Google Scholar 

  • Stewart, W. D. P., Rowell, P.: Effects ofl-methionine-dl-sulphoximine on the assimilation of newly fixed NH3, acetylene reduction and heterocyst production inAnabaena cylindrica. Biochem. Biophys. Res. Commun.65, 846–856 (1975)

    Google Scholar 

  • Stewart, G. R., Rhodes, D.: Evidence for the assimilation of ammonia via the glutamine pathway in nitrate-grownLemna minor L. FEBS Lett.64, 296–299 (1976)

    Google Scholar 

  • Syrett, P. J., Morris, I.: The inhibition of nitrate assimilation by ammonium inChlorella. Biochim. Biophys. Acta67, 566–575 (1963)

    Google Scholar 

  • Thacker, A., Syrett, P. J.: The assimilation of nitrate and ammonium byChlamydomonas reinhardi. New Phytol.71, 423–433 (1972)

    Google Scholar 

  • Wolk, C. P., Thomas, J., Shaffer, P. W.: Pathway of nitrogen metabolism after fixation of13N-labeled nitrogen gas by the cyanobacteriumAnabaena cylindrica. J. Biol. Chem.251, 5027–5034 (1976)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rigano, C., Di Martino Rigano, V., Vona, V. et al. Glutamine synthetase activity, ammonia assimilation and control of nitrate reduction in the unicellular red algaCyanidium caldarium . Arch. Microbiol. 121, 117–120 (1979). https://doi.org/10.1007/BF00689974

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00689974

Key words

Navigation