Skip to main content
Log in

The extended classical charged particle. II

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

A model of the extended classical charged particle is developed further to prove that the electron potential can be expressed as a superposition of null waves. The null waves are solutions of the homogeneous wave equation and are related to some recently discovered types of solutions which are localized and propagate without dispersion. Connections with quantum electrodynamics and the fine structure constant are indicated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. G. Beil,Found. Phys. 19, 319 (1989).

    Google Scholar 

  2. R. C. Jennison,Phys. Lett. A 141, 377 (1989).

    Google Scholar 

  3. M. Rambaut and J. P. Vigier,Phys. Lett. A 148, 377 (1990).

    Google Scholar 

  4. B. L. Willis,Phys. Lett. A 155, 351 (1991).

    Google Scholar 

  5. W. T. Grandy, Jr.,Relativistic Quantum Mechanics of Leptons and Fields (Kluwer Academic, Dordrecht, 1991).

    Google Scholar 

  6. J. N. Brittingham,J. Appl. Phys. 54, 1179 (1983).

    Google Scholar 

  7. P. Hillion,J. Math. Phys. 29, 2219 (1988).

    Google Scholar 

  8. P. Hillion,Phys. Rev. A 40, 1194 (1989).

    Google Scholar 

  9. P. Hillion,J. Math. Phys. 31, 3085 (1990).

    Google Scholar 

  10. P. Hillion,Int. J. Theor. Phys. 30, 197 (1991).

    Google Scholar 

  11. A. Sezginer,J. Appl. Phys. 57, 678 (1984).

    Google Scholar 

  12. I. M. Besieris, A. M. Shaarawi, and R. W. Ziolkowski,J. Math. Phys. 30, 1254 (1989).

    Google Scholar 

  13. E. Heyman, B. Z. Steinberg, and L. B. Felsen,J. Opt. Soc. Am. A 4, 2081 (1987).

    Google Scholar 

  14. R. W. Ziolkowski,J. Math. Phys. 26, 861 (1985).

    Google Scholar 

  15. R. W. Ziolkowski,Phys. Rev. A 39, 2005 (1989).

    Google Scholar 

  16. L. Mackinnon,Lett. Nuovo Cimento 31, 37 (1981).

    Google Scholar 

  17. B. Ritchie,Found. Phys. Lett. 4, 375 (1991).

    Google Scholar 

  18. C. Elbaz,Phys. Lett. A 127, 308 (1988).

    Google Scholar 

  19. M. Molski,J. Phys. A 24, 5063 (1991).

    Google Scholar 

  20. P. A. Hogan and G. F. R. Ellis,Ann. Phys. 195, 293 (1989).

    Google Scholar 

  21. J. L. Synge,Relativity, the Special Theory (North-Holland, Amsterdam, 1972).

    Google Scholar 

  22. W. Pauli,The Theory of Relativity (Dover, New York, 1981).

    Google Scholar 

  23. H. J. Bhabha,Proc. R. Soc. London A 172, 384 (1939).

    Google Scholar 

  24. B. L. Willis,J. Math. Phys. 30, 197 (1989).

    Google Scholar 

  25. B. L. Willis,J. Math. Phys. 32, 1400 (1991).

    Google Scholar 

  26. A. Lozada and P. L. Torres,J. Math. Phys. 30, 345 (1989).

    Google Scholar 

  27. F. Mandl and G. Shaw,Quantum Field Theory (Wiley, New York, 1984).

    Google Scholar 

  28. J. Kevorkian,Partial Differential Equations (Wadsworth & Brooks/Cole, Pacific Grove, California, 1990).

    Google Scholar 

  29. M. Abramowitz and I. A. Stegun,Handbook of Mathematical Functions (NBS, Washington, 1964), p. 486.

    Google Scholar 

  30. F. Rohrlich,Classical Charged Particles (Addison-Wesley, Reading, Massachusetts, 1965).

    Google Scholar 

  31. W. T. Grandy, Jr., private communication (1989).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beil, R.G. The extended classical charged particle. II. Found Phys 23, 1587–1600 (1993). https://doi.org/10.1007/BF00732366

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00732366

Keywords

Navigation