Skip to main content
Log in

H+-dependent efflux of Ca2+ from heart mitochondria

  • Research Articles
  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

A rapid loss of accumulated Ca2+ is produced by addition of H+ to isolated heart mitochondria. The H+-dependent Ca+ efflux requires that either (a) the NAD(P)H pool of the mitochondrion be oxidized, or (b) the endogenous adenine nucleotides be depleted. The loss of Ca2+ is accompanied by swelling and loss of endogenous Mg2−. The rate of H+-dependent Ca2+ efflux depends on the amount of Ca2+ and Pi taken up and the extent of the pH drop imposed. In the absence of ruthenium red the H+-induced Ca2+-efflux is partially offset by a spontaneous re-accumulation of released Ca2+. The H+-induced Ca2+ efflux is inhibited when the Pi transporter is blocked withN-ethylmaleimide, is strongly opposed by oligomycin and exogenous adenine nucleotides (particularly ADP), and inhibited by nupercaine. The H+-dependent Ca2+ efflux is decreased markedly when Na+ replaces the K+ of the suspending medium or when the exogenous K+/H+ exchanger nigericin is present. These results suggest that the H+-dependent loss of accumulated Ca2+ results from relatively nonspecific changes in membrane permeability and is not a reflection of a Ca2+/H+ exchange reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adam, H. (1965). InMethods of Enzymatic Analysis (Bergmeryer, H. U., ed.), Academic Press, New York, pp. 539–543; 573–577.

    Google Scholar 

  • Akerman K. E. O. (1978).Arch. Biochem. Biophys. 189 256–262.

    Google Scholar 

  • Altschuld, R. A., Hostetler, J. R., and Brierley, G. P. (1981).Circ. Res. 49 307–316.

    Google Scholar 

  • Asimakis, G. K., and Sordahl, L. A. (1981).Am. J. Physiol. 241 H672-H678.

    Google Scholar 

  • Brierley, G. P., Jurkowitz, M., Chavez, E., and Jung, D. W. (1977).J. Biol. Chem. 252 7932–7939.

    Google Scholar 

  • Carafoli, E. (1981). InMitochondria andMicrosomes (Lee, C. P., Schatz, G., and Dallner, G., eds), Addison-Wesley, Reading, Massachusetts, pp. 357–374.

    Google Scholar 

  • Coelho, J. L., and Vercesi, A. E. (1980).Arch. Biochem. Biophys. 204 141–147.

    Google Scholar 

  • Cromptom, M., and Heid, I. (1978).Eur. J. Biochem. 91 599–608.

    Google Scholar 

  • Dawson, A. P., and Fulton, D. W. (1980).Biochem. J. 188 749–755.

    Google Scholar 

  • Fiskum, G., and Lehninger, A. L. (1979).J. Biol. Chem. 254 6236–6239.

    Google Scholar 

  • Harris, E. J., and Cooper, M. B. (1981).Biochem. Biophys. Res. Commun. 103 788–796.

    Google Scholar 

  • Haworth, R. A., and Hunter, D. R. (1980).J. Membr. Biol. 54 231–236.

    Google Scholar 

  • Hohl, C., Ansel, A., Altschuld, R., and Brierley, G. P. (1982).Am. J. Physiol. 242 1022–1030.

    Google Scholar 

  • Jung, D. W., and Brierley, G. P. (1981).J. Biol. Chem. 256 10490–10496.

    Google Scholar 

  • Jung, D. W., Chavez, E., and Brierley, G. P. (1977).Arch. Biochem. Biophys. 183 452–459.

    Google Scholar 

  • Lehninger, A. L., Vercesi, A., and Bababuni, E. A. (1978).Proc. Natl. Acad. Sci. U.S. 75 1690–1694.

    Google Scholar 

  • Lowenstein, J. M., and Chance, B. (1968).J. Biol. Chem. 243 3940–3946.

    Google Scholar 

  • Nicholls, D. G. (1978).Biochem. J. 176 463–474.

    Google Scholar 

  • Nicholls, D. G., and Brand, M. D. (1980).Biochem. J. 188 113–118.

    Google Scholar 

  • Nicholls, D. G., and Crompton, M. (1980).FEBS Lett. 111 261–268.

    Google Scholar 

  • Nicholls, D. G., and Scott, I. D. (1980).Biochem. J. 186 833–839.

    Google Scholar 

  • Palmer, J. W., and Pfeiffer, D. R. (1981).J. Biol. Chem. 256 6742–6750.

    Google Scholar 

  • Panov, A., Filippova, S., and Lyaknovich, V. (1980).Arch. Biochem. Biophys. 199 420–426.

    Google Scholar 

  • Pfeiffer, D. R., Schmid, P. C., Beatrice, M. C., and Schmid, H. H. O. (1979).J. Biol. Chem. 254 11485–11494.

    Google Scholar 

  • Prpic, V., and Bygrave, F. L. (1980).J. Biol. Chem. 255 6193–6199.

    Google Scholar 

  • Roman, I., Gmaj, P., Nowicka, C., and Angielski, S. (1979).Eur. J. Biochem. 102 615–623.

    Google Scholar 

  • Saris, N. E. L., and Akerman, K. E. O. (1980).Curr. Top. Bioenerg. 10 103–179.

    Google Scholar 

  • Scarpa, A., Brinley, F. J., Jr., and Dubyak, G. (1978).Biochemistry 17 1378–1386.

    Google Scholar 

  • Shi, G-Y, Jung, D. W., Garlid, K. D., and Brierley (1980).J. Biol. Chem. 255 10306–10311.

    Google Scholar 

  • Struder, R. K., and Borle, A. B. (1980).Arch. Biochem. Biophys. 203 707–718.

    Google Scholar 

  • Tsokos, J., Cornwell, T. F., and Vlasuk, G. (1980).FEBS Lett. 119 297–300.

    Google Scholar 

  • Vercesi, A., Reynefarje, B., and Lehninger, A. L. (1978).J. Biol. Chem. 253 6379–6385.

    Google Scholar 

  • Waite, M., Scherphof, G. L., Boshouwers, F. M. G., and Van Deenen, L. L. M. (1969).J. Lipid Res. 10 411–420.

    Google Scholar 

  • Wolkowitz, P. E., and McMillan-Wood, J. (1981).Arch. Biochem. Biophys. 209 408–422.

    Google Scholar 

  • Zoccarato, F., Rugolo, M., Siliprandi, D., and Siliprandi, N. (1981).Eur. J. Biochem. 114 195–199.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jurkowitz, M.S., Brierley, G.P. H+-dependent efflux of Ca2+ from heart mitochondria. J Bioenerg Biomembr 14, 435–449 (1982). https://doi.org/10.1007/BF00743069

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00743069

Key Words

Navigation