Skip to main content
Log in

Mechanisms of action of interferon-β in multiple sclerosis

  • Published:
Springer Seminars in Immunopathology Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. IFNB Multiple Sclerosis Study Group (1993) Interferon beta-1b is effective in relapsing-remitting multiple sclerosis: I. Clinical results of a multicenter, randomized, double-blind, placebo-controlled trial. Neurology 43:655

    Google Scholar 

  2. Arnason BGW (1993) Interferon beta in multiple sclerosis. Neurology 43:641

    Google Scholar 

  3. IFNB Multiple Sclerosis Study Group and the University of British Columbia MS/MRI Analysis Group (1995) Interferon beta-1B in the treatment of multiple sclerosis: final outcome of the randomized controlled trial. Neurology 45:1277

    Google Scholar 

  4. Paty DW, Li DKB, UBC MS/MRI Study Group, IFNB Multiple Sclerosis Study Group (1993) Interferon beta-1b is effective in relapsing-remitting multiple sclerosis II. MRI analysis results of a multicenter, randomized, double-blind, placebo-controlled trial. Neurology 43:662

    Google Scholar 

  5. Arnason BGW, Reder AT (1994) Interferons and multiple sclerosis. Clin Neuropharmacol 17:495

    Google Scholar 

  6. Durelli L, Bongioanni MR, Cavallo R, Ferrero B, Ferri R, Ferrio MF, Bradac GB, Riva A, Vai S, Geuna M, Bergamini L, Bergamasco B (1994) Chronic systemic high dose recombinant interferon alfa-2a reduces exacerbation rate, MRI signs of disease activity, and lymphocyte interferon gamma production in relapsing-remitting multiple sclerosis. Neurology 44:406

    Google Scholar 

  7. Jacobs L, Cookfair D, Rudick R, Herndon R, Richert J, Salazar A, Fischer J, Granger C, Simon J, Goodkin D, MSCR Group (1994) Results of a phase III trial of intramuscular recombinant beta interferon as treatment for multiple sclerosis (abstract). Ann Neurol 36:259

    Google Scholar 

  8. Reference deleted

  9. Willoughby EW, Grochowski E, Li DKB, Oger J, Kastrukoff LF, Paty DW (1989) Serial magnetic resonance scanning in multiple sclerosis: a second prospective study in relapsing patients. Ann Neurol 25:43

    Google Scholar 

  10. Noronha ABC, Richman DP, Arnason BGW (1980) Detection of in vivo stimulated cerebrospinal fluid lymphocytes in multiple sclerosis by flow cytometry. N Engl J Med 303:713

    Google Scholar 

  11. Prineas JW, Barnard RO, Kwon EE, Sharer LR, Cho E-S (1993) Multiple sclerosis: remyelination of nascent lesions. Ann Neurol 33:137

    Google Scholar 

  12. Prineas JW, Kwon EE, Goldenberg PZ, Ilyas AA, Quarles RH, Benjamins JA, Sprinkle TJ (1989) Multiple sclerosis: oligodendrocyte proliferation and differentiation in fresh lesions. Lab Invest 61:489

    Google Scholar 

  13. Rodriguez M, Scheithauer BW, Forbes G, Kelly PJ (1993) Oligodendrocyte injury is an early event in lesions of multiple sclerosis. Mayo Clinic Proc 68:627

    Google Scholar 

  14. Ozawa K, Suchanek G, Breitschopf H, Brück W, Budka H, Jellinger K, Lassmann H (1994) Patterns of oligodendroglia pathology in multiple sclerosis. Brain 117:1311

    Google Scholar 

  15. Brück W, Schmied M, Suchanek G, Brüick Y, Breitschopf H, Poser S, Piddlesden S, Lassmann H (1994) Oligodendrocytes in the early course of multiple sclerosis. Ann Neurol 35:65

    Google Scholar 

  16. Van Walderveen MAA, Barkhof F, Hommes OR, Polman CH, Tobi H, Frequin STFM, VALK J (1995) Correlating MR1 and clinical disease activity in multiple sclerosis: relevance of hypointense lesions on short-TR/short-TE (T1 -weighted) spin-echo images. Neurology 45:1684

    Google Scholar 

  17. Paty DW, Li DKB, Oger JJ-F, Kastrukoff L, Koopmans R, Tanton E, Zhao GJ (1994) Magnetic resonance imaging in the evaluation of clinical trials in multiple sclerosis. Ann Neurol 36:595

    Google Scholar 

  18. Miller DH (1994) Magnetic resonance in monitoring the treatment of multiple sclerosis. Ann Neurol 36:591

    Google Scholar 

  19. Filippi M, Horsfield MA, Morissey SP, MacManus DG, Rudge P, McDonald WI, Miller DH (1994) Quantitative brain MR1 lesion load predicts the course of clinically isolated syndromes suggestive of multiple sclerosis. Neurology 44:635

    Google Scholar 

  20. Weinshenker BG, Bass B, Rice GPA, Noseworthy J, Carriere W, Baskerville J, Ebers GC (1989) The natural history of multiple sclerosis: a geographically based study. I. Clinical course and disability. Brain 112:133

    Google Scholar 

  21. Weinshenker BG, Bass B, Rice GPA, Noseworthy J, Carriere W, Baskerville J, Ebers GC (1989) The natural history of multiple sclerosis: a geographically based study. 2. Predictive value of the early clinical course. Brain 112:1419

    Google Scholar 

  22. Greenwood BG, cited in: Psychosocial factors in multiple sclerosis. Proceedings of the MS Forum Modern Management Workshop, Rome 1995, Professional Postgraduate Services, Worthing U.K., p 28

    Google Scholar 

  23. Cella DF, Dineen K, Arnason B, Reder A, Webster KA, Karabatsos G, Chang C-H, Lloyd S, Mo F, Stewart J, Stefoski D (1996) Validation of the functional assessment of multiple sclerosis (FAMS) quality of life instrument. Neurology (in press)

  24. Sharief MK, Hentges R (1991) Association between tumor necrosis factor-α and disease progression in patients with multiple sclerosis. N Engl J Med 325:467

    Google Scholar 

  25. Maimone D, Gregory S, Arnason BGW, Reder AT (1991) Cytokine levels in the cerebrospinal fluid and sera of patients with multiple sclerosis. J Neuroimmunol 32:67

    Google Scholar 

  26. Rothwell NJ, Relton JK (1993) Involvement of cytokines in acute neurodegeneration in the CNS. Neurosci Biobehav Rev 17:217

    Google Scholar 

  27. Pliskin NH, Towle VL, Hamer DP, Reder AT, Noronha A, Pietre S, Arnason BGW (1994) The effects of interferon-beta on cognitive function in multiple sclerosis (abstract). Ann Neurol 36:326

    Google Scholar 

  28. Sibley WA, Bamford CR, Clark K (1985) Clinical viral infections and multiple sclerosis. Lancet I:1313

    Google Scholar 

  29. Panitch HS, Bever CT, Katz E, Johnson KP (1991) Upper respiratory tract infections trigger attacks of multiple sclerosis in patients treated with interferon-β (abstract). J Neuroimmunol 35[Suppl 1]:125

    Google Scholar 

  30. Andersen O, Lygner P-E, Bergström T, Andersson M, Vahlne A (1993) Viral infections trigger multiple sclerosis relapses: a prospective seroepidemiological study. J Neurol 240:417

    Google Scholar 

  31. Reich N, Pine R, Levy D, Darnell JE Jr (1988) Transcription of interferon-stimulated genes is induced by adenovirus particles but is suppressed by E1A gene products. J Virol 62:114

    Google Scholar 

  32. Panitch HS (1994) Influence of infection on exacerbations of multiple sclerosis. Ann Neurol 36:S25

    Google Scholar 

  33. Panitch HS, Hirsch RL, Haley AS, Johnson KP (1987) Exacerbations of multiple sclerosis with gamma interferon. Lancet I:893

    Google Scholar 

  34. Reference deleted

  35. Yu C-L, Haskard DO, Cavender D, Johnson AR, Ziff M (1985) Human gamma interferon increases the binding of T lymphocytes to endothelial cells. Clin Exp Immunol 62:554

    Google Scholar 

  36. May MJ, Ager A (1992) ICAM-1-independent lymphocyte transmigration across high endothelium: differential up-regulation by interferon-γ, tumor necrosis factor-α and interleukin-1β. Eur J Immunol 22:219

    Google Scholar 

  37. Pober JS, Gimbrone MA Jr, Lapierre LA, et al (1986) Overlapping patterns of activation of human endothelial cells by interleukin 1, tumor necrosis factor, and immune interferon. J Immunol 137:1893

    Google Scholar 

  38. Thorhill MH, Aung UK, Haskard DO (1990) IL-4 increases human endothelial cell adhesiveness for T cells but not for neutrophils. J Immunol 144:3050

    Google Scholar 

  39. McCarron RM, Wang L, Racke MK, McFarlin DE, Spatz M (1993) Cytokine-regulated adhesion between encephalitogenic T lymphocytes and cerebrovascular endothelial cells. J Neuroimmunol 43:23

    Google Scholar 

  40. Eguchi K, Kawakami A, Nakashima M, Ida H, Sakito S, Matsuoka N, Terada K, Sakai M, Kawabe Y, Fukada T, Ishimaru T, Kurouji K, Fujita N, Aoyaji T, Maeda K, Nagataki S (1992) Interferonalpha and dexamethasone inhibit adhesion of T cells to endothelial cells and synovial cells. Clin Exp Immunol 88:448

    Google Scholar 

  41. Rotteveel FTM, Kuenen B, Kokkelink I, Meager A, Lucas CJ (1990) Relative increase of inflammatory CD4+ T cells in the cerebrospinal fluid of multiple sclerosis patients and control individuals. Clin Exp Immunol 79:15

    Google Scholar 

  42. Brod SA, Benjamin D, Haller DA (1991) Restricted T cell expression of IL-2/IFN-γ mRNA in human inflammatory disease. J Immunol 147:810

    Google Scholar 

  43. Benvenuto R, Paroli M, Buttinelli C, Franco A, Barnaba V, Fieschi C, Balsano F (1991) Tumor necrosis factor-alpha synthesis by cerebrospinal-fluid-derived T cell clones from patients with multiple sclerosis. Clin Exp Immunol 84:97

    Google Scholar 

  44. Trotter JL, Collins KG, Veen RC van der (1991) Serum cytokine levels in chronic progressive multiple sclerosis: interleukin-2 levels parallel tumor necrosis factor-α levels. J Neuroimmunol 33:29

    Google Scholar 

  45. Beck J, Rodot P, Catinot L, Falcoff E, Kirchner H, Wietzerbin J (1988) Increased production of interferon gamma and tumor necrosis factor precedes clinical manifestation in multiple sclerosis: do cytokines trigger off exacerbations? Acta Neurol Scand 78:318

    Google Scholar 

  46. Lu C-Z, Jensen MA, Arnason BGW (1993) Interferon gamma- and interleukin-4-secreting cells in multiple sclerosis. J Neuroimmunol 46:123

    Google Scholar 

  47. Traugott U, Lebon P (1988) Multiple sclerosis: involvement of interferons in lesion pathogenesis. Ann Neurol 24:243

    Google Scholar 

  48. Traugott U, Lebon P (1988) Interferon-γ and Ia antigen are present on astrocytes in active chronic multiple sclerosis lesions. J Neurol Sci 84:257

    Google Scholar 

  49. Zipp F, Weber F, Huber S, Sorgiu S, Czlonkowska A, Holler E, Albert E, Weiss EH, Wekerle H, Hohlfeld R (1995) Genetic control of multiple sclerosis: increased production of lymphotoxin and tumor necrosis factor-α by HLA-DR2+ T cells. Ann Neurol 38:723

    Google Scholar 

  50. Nedwin GE, Svedersky LP, Bringman TS, Palladino MA Jr, Goeddel DV (1985) Effect of interleukin 2, interferon-γ, and mitogens on the production of tumor necrosis factors α andβ. J Immunol 135:2492

    Google Scholar 

  51. Selmaj K, Raine CS, Farooq M, Norton WT, Brosnan CF (1991) Cytokine cytotoxicity against oligodendrocytes: apoptosis induced by lymphotoxin. J Immunol 147:1522

    Google Scholar 

  52. Stone-Wolff DS, Yip YK, Kelker HC, Le M-M, Henriksen-Destefano D, Rubin BY, Rinderknecht E, Aggarwal BB, Vilček J (1984) Interrelationships of human interferon-gamma with lymphotoxin and monocyte cytotoxin. I Exp Med 159:828

    Google Scholar 

  53. Powell MB, Mitchell D, Lederman J, Buchmeier J, Zamvil SS, Graham M, Ruddle NH, Steinman L (1990) Lymphotoxin porduction by myelin basic protein-specific T cell clones correlates with encephalitogenicity. Int Immunol 2:539

    Google Scholar 

  54. Selmaj K, Raine CS, Cannella B, Brosnan CF (1991) Identification of lymphotoxin and tumor necrosis factor in multiple sclerosis lesions. J Clin Invest 87:949

    Google Scholar 

  55. Hofman FM, Hinton DR, Johnson K, Merrill JE (1989) Tumor necrosis factor identified in multiple sclerosis brain. J Exp Med 170:607

    Google Scholar 

  56. Selmaj KW, Raine CS (1988) Tumor necrosis factor mediates myelin and oligodendrocyte damage in vitro. Ann Neurol 23:339

    Google Scholar 

  57. Soliven B, Szuchet S, Nelson DJ (1991) Tumor necrosis factor inhibits K+ current expression in cultured oligodendrocytes. J Membr Biol 124:127

    Google Scholar 

  58. Ruddle NH, Bergman CM, McGrath KM, Lingenheld EG, Grunnet ML, Padula SJ, Clark RB (1990) An antibody to lymphotoxin and tumor necrosis factor prevents transfer of experimental allergic encephalomyelitis. J Exp Med 172:1193

    Google Scholar 

  59. Selmaj KW, Farooq M, Norton WT, Raine CS, Brosnan CF (1990) Proliferation of astrocytes in vitro in response to cytokines: a primary role for tumor necrosis factor. J Immunol 144:129

    Google Scholar 

  60. Yong VW, Moumdijan R, Yong FP, Ruijs TC, Freedman MS, Cashman N, Antel JP (1991) γ-Interferon promotes proliferation of adult human astrocytes in vitro and reactive gliosis in the adult mouse brain in vivo. Proc Natl Acad Sci USA 88:7016

    Google Scholar 

  61. Giulian D, Lachman LB (1985) Interleukin-I stimulation of astroglial proliferation after brain injury. Science 228:497

    Google Scholar 

  62. Benveniste EN, Sparacio SM, Bethea JR (1989) Tumor necrosis factor-α on the expression of an Ia antigen on a murine macrophage cell line. J Immunol 137:2853

    Google Scholar 

  63. Jacobsen H, Mestan J, Mittnacht S, Dieffenbach CW (1989) Beta interferon subtype 1 induction by tumor necrosis factor. Mol Cell Biol 9:9037

    Google Scholar 

  64. Rubin BY, Anderson SL, Lunn RM, Richardson NK, Hellerman GR, Smith LJ, Old LJ (1988) Tumor necrosis factor and IFN induce a common set of proteins. J Immunol 141:1180

    Google Scholar 

  65. Reyes VE, Ballas ZK, Singh H, Klimpel GR (1986) Interleukin-2 induces IFN-α/β production in murine bone marrow cells. Cell Immunol 102:374

    Google Scholar 

  66. Hertzog PJ, Wright A, Harris G, Linnane AW, MacKay IR (1991) Intermittent interferonemia and interferon responses in multiple sclerosis. Clin Immunol Immunopathol 58:18

    Google Scholar 

  67. Kelley VE, Fiers W, Strom TB (1984) Cloned human interferon-γ, but not interferon-β orα, induces expression of HLA-DR determinants by fetal monocytes and myeloid leukemic cell lines. J Immunol 132:240

    Google Scholar 

  68. Meinl E, Aloisi F, Ertl B, Weber F, deWall Malefyt R, Wekerle H, Hohlfeld R (1994) Multiple sclerosis: immunomodulatory effects of human astrocytes on T cells. Brain 117:1323

    Google Scholar 

  69. Ling PD, Warren MK, Vogel SN (1985) Antagonistic effect of interferon-beta on the interferongamma-induced expression of Ia antigen in murine macrophages. J Immunol 135:1857

    Google Scholar 

  70. Noronha A, Toscas A, Jensen MA (1993) Interferon O decreases T cell activation and interferonγ production in multiple sclerosis. J Neuroimmunol 46:145

    Google Scholar 

  71. Panitch HS, Folus JS, Johnson KP (1987) Recombinant beta interferon inhibits gamma interferon production in multiple sclerosis. Ann Neurol 22:139

    Google Scholar 

  72. Billiau A, De Somer P, Edy VG, De Clercq E, Heremans H (1979) Human fibroblast interferon for clinical trials: pharmacokinetics and tolerability in experimental animals and humans. Antimicrob Agents Chemother 16:56

    Google Scholar 

  73. DeSomer P, Edy VG, Billau A (1977) Interferon-induced skin reactivity in man. Lancet 11:47

    Google Scholar 

  74. Collart MA, Belin D, Vassalli J-D, Kossodo S de, Vassalli P (1986)γ Interferon enhances macrophage transcription of the tumor necrosis factor/cachetin, interleukin 1, and urokinase genes, which are controlled by short-lived repressors. J Exp Med 164:2113

    Google Scholar 

  75. Spear GT, Paulnock DM, Jordan RL, Meltzer DM, Merritt JA, Borden EC (1987) Enhancement of monocyte class I and II histocompatibility antigen expression in man by in vivoβ-interferon. Clin Exp Immunol 69:107

    Google Scholar 

  76. Chiang J, Gloff CA, Yoshizawa CN, Williams GJ (1993) Pharmacokinetics of recombinant human interferon-β ser in healthy volunteers and its effect on serum neopterin. Pharm Res 10:567

    Google Scholar 

  77. Huber C, Batchelor JR, Fuchs D, Hausen A, Lang A, Niedenwieser D, Reibnegger G, Swetly P, Troppmair J, Wachter H (1984) Immune response-associated production of neopterin: release from macrophages primarily under control of interferon-gamma. J Exp Med 160:310

    Google Scholar 

  78. Barak M, Gruener N (1991) Neopterin augmentation of tumor necrosis factor production. Immunol Lett 30:101

    Google Scholar 

  79. Moutabarrik A, Takahara S, Namiki M, Kameoka H, Seguchi T, Yokokawa K, Takano Y, Sonada T, Ishibashi M, Zaid D, et al (1992) Contrasting effects of interferon-gamma and interleukin-4 on neopterin generation from human adhesion monocytes. Lymphokine Cytokine Res 11:327

    Google Scholar 

  80. Dayal A, Jensen MA, Lledo A, Arnason BGW, (1995) Interferon gamma-secreting cells in multiple sclerosis patients treated with interferon beta-1B. Neurology 45:2173

    Google Scholar 

  81. Dayal A, Qu Z-X, Jensen M, Amason BOW (1996) Transretinoic acid reverses induction of interferonγ-secreting cells by interferonβ-1B. Neurology (in press)

  82. Olsson T (1992) Cytokines in neuroinflammatory disease: role of myelin autoreactive T cell production of interferon-gamma. J Neuroimmunol 40:211

    Google Scholar 

  83. Mustafa MI, Diener P, Höjeberg B, Van der Meide P, Olsson T (1991) T cell immunity and interferon-γ secretion during experimental allergic encephalomyelitis in Lewis rats. J Neuroimmunol 31:165

    Google Scholar 

  84. Mustafa MI, Diener P, Sun J-B, Link H, Olsson T (1993) Immunopharmacologic modulation of experimental allergic encephalomyelitis: low-dose cyclosporin-A treatment causes disease relapse and increased system T and B cell-mediated myelin-directed autoimmunity. Scand J Immunol 38:499

    Google Scholar 

  85. Johns L, Franders KC, Sriram S (1991) Successful treatment of experimental allergic encephalomyelitis with transforming growth factor-β1. Neurology 41:318

    Google Scholar 

  86. Racke MK, Dhib-Jalbut S, Cannella B, Albert PS, Raine CS, McFarlin DE (1991) Prevention and treatment of chronic relapsing experimental allergic encephalomyelitis by transforming growth factor-β1. J Immunol 146:3012

    Google Scholar 

  87. Kuruvilla AP, Shah R, Hochwald GM, Liggitt HD, Palladino MA, Thorbecke GJ (1991) Protective effect of transforming growth factorβ 1 on experimental autoimmune diseases in mice. Proc Natl Acad Sci USA 88:2918

    Google Scholar 

  88. Koh D-R, Fung Leung W-P, Ho A, Gray D, Acha-Orbea H, Mak T-W (1992) Less mortality but more relapses in experimental allergic encephalomyelitis in CD8−−/−− mice. Science 256:1210

    Google Scholar 

  89. Arnason BGW, Antel JP (1978) Suppressor cell function in multiple sclerosis. Ann Immunol (Paris) 129C:159

    Google Scholar 

  90. Antel JP, Arnason BGW, Medof ME (1979) Suppressor cell function in multiple sclerosis: correlation with clinical disease activity. Ann Neurol 5:338

    Google Scholar 

  91. Antel JP, Bania MB, Reder A, Cashman N (1985) Activated suppressor cell dysfunction in progressive multiple sclerosis. J Immunol 137:137

    Google Scholar 

  92. Noronha A, Toscas A, Jensen MA (1990) Interferon beta augments suppressor cell function in multiple sclerosis. Ann Neurol 27:207

    Google Scholar 

  93. Noronha A, Toscas A, Jensen MA (1992) Contrasting effects of alpha, beta and gamma interferons on nonspecific suppressor function in multiple sclerosis. Ann Neurol 31:103

    Google Scholar 

  94. Noronha A, Toscas A, Arnason BGW, Jensen M (1994) IFN-beta augments in vivo suppressor function in MS (abstract). Neurology 44[Suppl 2]:A212

    Google Scholar 

  95. Tsunawaki S, Sporn M, Ding A, Nathan C (1988) Deactivation of macrophages by transforming growth factor-β. Nature 334:260

    Google Scholar 

  96. Fontana A, Constam DB, Frei K, Malipiero U, Pfister HW (1992) Modulation of the immune response by transforming growth factor beta. Int Arch Allergy Immunol 99:1

    Google Scholar 

  97. Gamble JR, Vadas MA (1991) Endothelial cell adhesiveness for human T lymphocytes is inhibited by transforming growth factor 146:1149

  98. Karpus WJ, Swanborg RH (1991) CD4+ suppressor cells inhibit the function of effector cells of experimental autoimmune encephalomyelitis through a mechanism involving transforming growth factor-beta. J Immunol 146:1163

    Google Scholar 

  99. Stevens DB, Gould KE, Swanborg RH (1994) Transforming growth factor-β 1 inhibits tumor necrosis factorα/lymphotoxin production and adoptive transfer of disease by effector cells of autoimmune encephalomyelitis. J Neuroimmunol 51:77

    Google Scholar 

  100. Beck J, Rondot P, Jullien P, Wietzerbin J, Lawrence DA (1991) TGF-β-like activity produced during regression of exacerbations in multiple sclerosis. Acta Neurol Scand 84:452

    Google Scholar 

  101. Noronha A, Jensen M, Toscas A (1993) TGF-β activity in MS: effect of IFN-β. Neurology 43 [Suppl]:355

    Google Scholar 

  102. Panitch HS, Folus JS, Johnson KP (1991) Activated suppressor cells inhibit synthesis of interferon γ in patients with multiple sclerosis and normal subjects (abstract). J Neuroimmunol 36:S186

    Google Scholar 

  103. Qu Z-X, Jensen MA, Arnason BGW (1995) Retinoic acid potentiates the ability of interferon beta-1B to augment suppressor cell function. Neuroscience 21 (part 2):1151

    Google Scholar 

  104. Massacesi L, Abbamondi AL, Giorgi C, Sarlo F, Lolli F, Amaducci L (1987) Suppression of experimental allergic encephalomyelitis by retinoic acid. J Neurol Sci 80:55

    Google Scholar 

  105. Racke MK, Burnette D, Pak S-H, McFarlin DE, Scott DE (1995) Retinoid treatment of experimental allergic encephalomyelitis: IL-4 production correlates with improved disease course. J Immunol 154:450

    Google Scholar 

  106. Hart PH, Vitti GF, Burgess DR, Whitty GA, Piccoli DS, Hamilton JA (1989) Potential antiinflammatory effects of interleukin 4: suppression of human monocyte tumor necrosis factorα, interleukin 1, and prostaglandin E2. Proc Natl Acad Sci USA 86:3803

    Google Scholar 

  107. Wong HL, Lotze MT, Wahl LM, Wahl SM (1992) Administration of recombinant IL-4 to humans regulates gene expression, phenotype, and function in circulating monocytes. J Immunol 148:2118

    Google Scholar 

  108. Vannier E, Miller LC, Dinarello CA (1992) Coordinated andinflammatory effects of interleukin 4: interleukin 4 suppresses interleukin 1 production but up-regulates gene expression and synthesis of interleukin 1 receptor antagonist. Proc Natl Acad Sci USA 89:4076

    Google Scholar 

  109. Lehn M, Weiser WY, Engelhorn S, Gills S, Remold HG (1989) IL-4 inhibits H2O2 production and antileishmanial capacity of human cultured monocytes mediated by IFN-γ. J Immunol 143:3020

    Google Scholar 

  110. Kennedy MK, Torrance DS, Picha KS, Mohler KM (1992) Analysis of cytokine mRNA expression in the central nervous system of mice with experimental autoimmune encephalomyelitis reveals that IL-10 mRNA expression correlates with recovery. J Immunol 149:2496

    Google Scholar 

  111. Jensen MA, Noronha A, Toscas A, Arnason BGW (1996) Antigenically non-specific global suppression of IL-2 and IFN-γ synthesis and an anergic like state in central nervous system infiltrating mononuclear cells precedes recovery from acute monophasic experimental allergic encephalomyelitis. Autoimmunity (in press)

  112. Karpus WJ, Swanborg RH (1989) CD4+ suppressor cells differentially affect the production of IFN-γ by effector cells of experimental autoimmune encephalomyelitis. J Immunol 143:3492

    Google Scholar 

  113. Nedwin GE, Svedersky LP, Bringman TS, Palladino MA Jr, Goeddel DV (1985) Effect of interleukin 2, interferon-y, and mitogens on the production of tumor necrosis factorsα andβ. J Immunol 135:2492

    Google Scholar 

  114. Hermann F, Cannistra SA, Lindemann A, Blohm D, Rambaldi A, Mertelsmann RH, Griffin JD (1989) Functional consequences of monocyte IL-2 receptor expression: induction of IL-1β secretion by IFN-γ and IL-2. J Immunol 142:139

    Google Scholar 

  115. Boraschi D, Pasqualetto E, Ghezzi P, Salmona M, Bartalini M, Barbarulli G, Censivi S, Soldateschi D, Tagliabuc A (1982) Dissociation between macrophage tumoricidal capacity and suppressive activity: analysis with macrophage-defective mouse strains. J Immunol 131:1707

    Google Scholar 

  116. Go NF, Castle BE, Barrett R, Kastelein A, Dang W, Mosmann TR, Moore KW, Howard M (1990) Interleukin 10, a novel B cell stimulatory factor: unresponsiveness of X chromosome-linked immunodeficiency B cells. J Exp Med 172:1625

    Google Scholar 

  117. Chouaib S, Fradelizi D (1982) The mechanism of inhibition of human IL 2 production. J Immunol 129:2463

    Google Scholar 

  118. Betz M, Fox BS (1991) Prostaglandin E2 inhibits production of Th1 lymphokines but not of Th2 lymphokines. J Immunol 146:108

    Google Scholar 

  119. Chouaib S, Welte K, Mertelsmann R, Dupont B (1985) Prostaglandin E2 acts at two distinct pathways of T lymphocyte activation: inhibition of interleukin-2 production and down-regulation of transferrin receptor expression. J Immunol 135:1172

    Google Scholar 

  120. Rappaport RS, Dodge GR (1982) Prostaglandin E inhibits the production of human interleukin 2. J Exp Med 155:943

    Google Scholar 

  121. Ferreri NR, Sarr T, Askenase PW, Ruddle NH (1992) Molecular regulation of tumor necrosis factor-alpha and lymphotoxin production in T cells: inhibition by prostaglandin E2. J Biol Chem 267:9443

    Google Scholar 

  122. Widomski DL, Walsh RE, Baron DA, Hidvegi MI, Fretland DJ, Collins PW, Gaginella TS (1991) Effects of the prostaglandin analogue misoprostol on inflammatory mediator release by human monocytes. Agents Actions 34:30

    Google Scholar 

  123. Reder AT, Thapar M, Sapugay AM, Jensen MA (1995) Eicosenoids modify experimental allergic encephalomyelitis. Am J Ther 2:1

    Google Scholar 

  124. Reder AT, Arnason BGW (1995) Trigeminal neuralgia in multiple sclerosis relieved by a prostaglandin E analogue. Neurology 45:1097

    Google Scholar 

  125. Dore-Duffy P, Perry W, Kuo H-H (1983) Interferon-mediated inhibition of prostaglandin synthesis in human mononuclear leukocytes. Cell Immunol 79:232

    Google Scholar 

  126. Boraschi D, Soldateschi D, Tagliabue A (1982) Macrophage activation by interferon: dissociation between tumoricidal capacity and suppressive activity. Eur J Immunol 12:320

    Google Scholar 

  127. Reder AT (1991) IFN-β and IFN-γ modify expression of monocyte surface proteins. J Interferon Res 11 [Suppl 1]:121

    Google Scholar 

  128. Dentener MA, Bazil V, Von Asmuth EJU, Ceska M, Buurman WA (1993) Involvement of CD14 in lipopolysaccharide-induced tumor necrosis factor-α, IL-6 and IL-8 release by human monocytes and alveolar macrophages. J Immunol 150:2885

    Google Scholar 

  129. Gimmi CD, Freeman GJ, Gribben JG, Sugita K, Freedman AS, Morimoto C, Nadler LM (1991) B-cell surface antigen B7 provides a costimulatory signal that induces T cells to proliferate and secrete interleukin 2. Proc Natl Acad Sci USA 88:6575

    Google Scholar 

  130. Kuchroo VK, Das MP, Brown JA, Ranger AM, Zamvil SS, Sobel RA, Weiner HL, Nabavi N, Glimcher LH (1995) B7-1 and B7-2 costimulatory molecules activate differentially the Th1/Th2 developmental pathways: application to autoimmune disease therapy. Cell 80:707

    Google Scholar 

  131. Genç K, Reder AT (1995) IFN-β-1b reverses elevated lymphocyte B7-1 in MS (abstract). J Neuroimmunol 52 [Suppl 1]:20

    Google Scholar 

  132. Ding L, Linsley PS, Huang L-Y, Germain RN, Shevach EM (1993) IL-10 inhibits macrophage (Mo) co-stimulatory activity by selectively inhibiting the upregulation of B7 expression. J Immunol 150:180A

    Google Scholar 

  133. Ransohoff RM, Devajyothi C, Estes ML, Babcock G, Rudick RA, Frohman EM, Bama BP (1991) Interferon-β specifically inhibits interferon-γ-induced class II major histocompatibility complex gene transcription in a human astrocytoma cell line. J Neuroimmunol 33:103

    Google Scholar 

  134. Joseph J, Knobler RL, D'Imperio C, Lublin FD (1988) Down-regulation of interferon-γ-induced class II expression on human glioma cells by recombinant interferon-β: effects of dosage treatment schedule. J Neuroimmunol 20:39

    Google Scholar 

  135. Matsumoto Y, Hanawa H, Tsuchida M, Abo T (1993) In situ inactivation of infiltrating T cells in the central nervous system with autoinunune encephalomyelitis: the role of astrocytes. Immunology 79:381

    Google Scholar 

  136. Weber F, Meinl E, Aloisi F, Nevinny-Stickel C, Albert E, Wekerle H (1994) Human astrocytes are only partially competent antigen presenting cells: possible implications for lesion development in multiple sclerosis. Brain 117:59

    Google Scholar 

  137. MacPhee IAM, Antoni FA, Mason DW (1989) Spontaneous recovery of rats from experimental allergic encephalomyelitis is dependent on regulation of the immune system by endogenous adrenal corticosteroids. J Exp Med 169:431

    Google Scholar 

  138. Reder AT, Lowy MT (1992) Interferon-beta treatment does not elevate cortisol in multiple sclerosis. J Interferon Res 12:195

    Google Scholar 

  139. Pender MP, McCombe PA, Yoong G, Nguyen KB (1992) Apoptosis ofαβT lymphocytes in the nervous system in experimental autoimmune encephalomyelitis. J Autoimmun 5:401

    Google Scholar 

  140. Hecht TT, Longo DL, Matis LA (1983) The relationship between immune interferon production and proliferation in antigen-specific MHC-restricted T cell lines and clones. J Immunol 131:1049

    Google Scholar 

  141. Liu Y, Janeway CA Jr (1990) Interferon γ plays a critical role in induced cell death of effector T cells: a possible third mechanism of self-tolerance. J Exp Med 172:1735

    Google Scholar 

  142. Heremans H, Dillen C, Dijkmans R, Grau G, Billiau A (1989) The role of cytokines in various animals models of inflammation. Lymphokine Res 8:329

    Google Scholar 

  143. Voorthuis JAC, Uitdehaag BMJ, DeGroot CJA, Goede PH, Van Der Meide PH, Dijkstra CD (1990) Suppression of experimental allergic encephalomyelitis by intraventricular administration of interferon-gamma in Lewis rats. Clin Exp Immunol 81:183

    Google Scholar 

  144. Billiau A, Heremans H, Vandekerckhove F, Dijkmans R, Sobis H, Meulepas E, Carton H (1988) Enhancement of experimental allergic encephalomyelitis in mice by antibodies against IFN-gamma. J Immunol 140:1506

    Google Scholar 

  145. Reference deleted

  146. Xian-hao X, McFarlin DE (1984) Oligoclonal bands in CSF: twins with MS. Neurology 34:769

    Google Scholar 

  147. Farrell MA, Kaufmann JCE, Gilbert JJ, Noseworthy JH, Armstrong HA, Ebers GC (1985) Oligoclonal bands in multiple sclerosis: clinical-pathologic correlation. Neurology 35:212

    Google Scholar 

  148. Ross C, Hansen MB, Schyberg T, Berg K (1990) Autoantibodies to crude human leucocyte interferon (IFN), native human IFN, recombinant human IFN-alpha 2b and human IFN-gamma in healthy blood donors. Clin Exp Immunol 82:57

    Google Scholar 

  149. Panitch HS, Francis GS, Hooper CJ, Merigan TC, Johnson KP (1985) Serial immunological studies in multiple sclerosis patients treated systematically with human alpha interferon. Ann Neurol 18:434

    Google Scholar 

  150. Rice GP, Woelfel EL, Talbot PJ, Braheny SL, Sipe JC, Knobler AL, Merigan TC, Oldstone MB (1985) Immunological complications in multiple sclerosis patients receiving interferon. Ann Neurol 18:439

    Google Scholar 

  151. Abreu SL, Thampoe I, Kaplan P (1986) Interferon in experimental autoimmune encephalomyelitis: intraventricular administration. J Interferon Res 6:627

    Google Scholar 

  152. Abreu SL (1982) Suppression of experimental allergic encephalomyelitis by interferon. Immunol Commun 11:1

    Google Scholar 

  153. Abreu SL (1985) Interferon in experimental autoimmune encephalomyelitis (EAE): effects of exogenous interferon on the antigen-enhanced adoptive transfer of EAE. Int Arch Allergy Appl Immunol 76:302

    Google Scholar 

  154. Abreu SL, Tondreau J, Levine S, Sowinski R (1983) Inhibition of passive localized experimental allergic encephalomyelitis by interferon. Int Arch Allergy Apply Immunol 72:30

    Google Scholar 

  155. Hertz F, Deghenghi R (1985) Effect of rat andβ-human interferons on hyperacute experimental allergic encephalomyelitis in rats. Agents Actions 16:347

    Google Scholar 

  156. Inada T, Mims CA (1986) Infection of mice with lactic dehydrogenase virus prevents development of experimental allergic encephalomyelitis. J Neuroimmunol 11:53

    Google Scholar 

  157. Heremans H, Billiau A, Coutelier JP, De Somer P (1987) The inhibition of endotoxin-induced local inflammation by LDH virus or LDH virus-infected tumors is mediated by itnerferon. Proc Soc Exp Biol Med 185:6

    Google Scholar 

  158. Habif DV, Lipton R, Cantell K (1975) Interferon crosses blood-cerebrospinal fluid barrier in monkeys. Proc Soc Exp Biol Med 149:287

    Google Scholar 

  159. Noronha A, Toscas A, Jensen MA (1993) Interferonβ decreases T cell activation and interferonγ production in multiple sclerosis. J Neuroimmunol 46:145

    Google Scholar 

  160. Rudick RA, Carpenter CS, Cookfair DL, Tuohy VK, Ransohoff RM (1993) In vitro and in vivo inhibition of mitogen-driven T-cell activation by recombinant interferon beta. Neurology 43:2080

    Google Scholar 

  161. Klimpel GR, Infante AJ, Patterson J, Hess CB, Asuncion M (1990) Virus-induced interferonα/β (IFN-α/β) production by T cells and by Th1 and Th2 helper T cell clones: a study of the immunoregulatory actions of IFN- versus IFN-α/β on functions of different T cell populations. Cell Immunol 128:603

    Google Scholar 

  162. Zarling JM, Sosman J, Eskra L, Borden EC, Horoszewicz JS, Carter WA (1978) Enhancement of T cell cytotoxic responses by purified human fibroblast interferon. J Immunol 121:2002

    Google Scholar 

  163. Rosztóczy I, Siroki O, Béládi I (1986) Effects of interferons-α, -β, and -γ on human interleukin-2 production. J Interferon Res 6:581

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arnason, B.G.W., Dayal, A., Qu, Z.X. et al. Mechanisms of action of interferon-β in multiple sclerosis. Springer Semin Immunopathol 18, 125–148 (1996). https://doi.org/10.1007/BF00792613

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00792613

Keywords

Navigation