Skip to main content
Log in

A mechanical model for deformation and earthquakes on strike-slip faults

  • Published:
pure and applied geophysics Aims and scope Submit manuscript

Abstract

A two-dimensional model for stress accumulation and earthquake instability associated with strike-slip faults is considered. The model consists of an elastic lithosphere overlying a viscous asthenosphere, and a fault of finite width with an upper brittle zone having an elastoplastic response and a lower ductile zone having an elastoviscoplastic response. For the brittle, or seismic, zone the behavior of the fault material is assumed to be governed by a relation which involves strain hardening followed by a softening regime, with strength increasing with depth. For the fault material in the ductile, or aseismic, section, the viscous effect is included through use of a nonlinear creep law, and the strength is assumed to decrease with depth. Hence, because of the lesser strength and the viscous effect, continuous flow occurs at great depths, causing stress accumulation at the upper portion of the fault and leading to failure at the bottom of the brittle zone. The failure is initially due to localized strain softening but, with further flow, the material above the softened zone reaches its maximum strength and begins to soften. This process accelerates and may result in an unstable upward rupture propagation.

Relations are developed for the history of deformation within the lithosphere, specifically for the velocity of particles within the fault and at the ground surface. The boundary-element method is used for a quantitative study, and numerical results are obtained and compared with the recorded surface deformation of the San Andreas fault. The effects of geometry and material properties on instability, on the history of the surface deformation, and on the earthquake recurrence time are studied. The results are presented in terms of variations of ground-surface shear strain and shear strain rate, and velocity of points within the fault at various times during the earthquake cycle.

It is found that the location of rupture initiation, the possibility of a sudden rupture as opposed to stable creep, and also the ground deformation pattern and its history, all critically depend on the mechanical response of the material within the fault zone, especially that of the brittle section. Shorter earthquake recurrence times are obtained for shallower brittle zones and for a stiffer lithosphere. Lower viscosities of the aseismic zone and the absence of asthenospheric coupling tend to suppress instability and promote stable creep. The model results thus suggest that the overall viscosity of the ductile creeping zone must exceed a minimum value for a sudden upward propagating rupture to take place within the seismic section.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bonafede, M., Boschi, E. andDragoni, M. (1982).On the recurrence time of great earthquakes on a long transform fault.J. Geophys. Res. 87, 10551–10556.

    Google Scholar 

  • Brace, W. F. andByerlee, J. D. (1970),California earthquakes: Why only shallow focus? Science168, 1573–1575.

    Google Scholar 

  • Brune, J. N. (1974),Current status of understanding quasi-permanent fields associated with earthquakes. EOS Trans. Am. Geophys. Union55, 820–827.

    Google Scholar 

  • Budiansky, B. andAmazigo, J. C. (1976),Interaction of fault slip and lithospheric creep. J. Geophys. Res.81, 4897–4900.

    Google Scholar 

  • Burridge, R. (1977),A repetitive earthquake source model. J. Geophys. Res.82, 1663–1666.

    Google Scholar 

  • Burridge, R. andHalliday, G. S. (1971),Dynamic shear cracks with friction as models for shallow focus earthquakes. Geophys. J. Roy. Astr. Soc.25, 261–283.

    Google Scholar 

  • Carter, N. L. (1976),Steady-state flow of rocks. Rev. Geophys. Space Phys.14, 301–360.

    Google Scholar 

  • Carter, N. L., Anderson, D. A., Hansen, F. D. andKranz, R. L., ‘Creep and creep rupture of granitic rocks’, inMechanical Behavior of Crustal Rocks, The Handin Volume (eds. Carter, N. L., Friedman, M., Logan, J. M. and Stearns, D. W.). Geophys. Monogr. Ser. No. 24, Am. Geophys. Union, Washington, D. C., 1981, pp. 61–82.

    Google Scholar 

  • Cathles, L. M.,The Viscosity of the Earth's Mantle Princeton Univ. Press, Princeton, N. J., 1975.

    Google Scholar 

  • Chapple, W. M. andTullis, T. E. (1977),Evaluation of the forces that drive the plates. J. Geophys. Res.82, 1967–1984.

    Google Scholar 

  • Chinnery, M. A. (1961),The deformation of the ground around surface faults. Bull. Seismol. Soc. Am.,51, 355–372.

    Google Scholar 

  • Chinnery, M. A., ‘Earthquake Displacement Fields’, inEarthquake Displacement Fields and the Rotation of the Earth (ed. Mansinha, L., et al.), 1970, pp. 17–38.

  • Davies, G. F. (1978),The roles of boundary friction, basal shear stress and deep mantle convection in plate tectonics. Geophys. Res. Lett.5, 161–164.

    Google Scholar 

  • Dieterich, J. H., ‘Experimental and model study of fault constitutive properties’, inSolid Earth Geophysics and Geotechnology (ed. Nemat-Nasser, S.). AMD-42, ASME, 1980), pp. 21–30.

  • Dieterich, J. H., ‘Constitutive properties of faults with simulated gouge’, inMechanical Behavior of Crustal Rocks, The Handin Volume (eds. Carter, N. L., Friedman, M., Logan, J. M., and Stearns, D. W.), Geophys. Monogr. Ser. No. 24 Am. Geophys. Union, Washington, D.C., 1981, pp. 103–120.

    Google Scholar 

  • Elsasser, W. M. (1971), Two layer model of upper-mantle circulation. J. Geophys. Res.76, 4744–4753.

    Google Scholar 

  • Eshelby, J. D. (1957),The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. R. Soc. London Ser. A241, 376–396.

    Google Scholar 

  • Fleitout, L., andFroidevaux, C. (1980),Thermal and mechanical evolution of shear zones. J. Struct. Geol.2, 159–164.

    Google Scholar 

  • Griggs, D. T., Turner, F., andHeard, H. C., ‘Deformation of rocks at 500–800 °C,’ inRock Deformation (eds. Griggs, D. T. and Handin, J.). Geol. Soc. Am. Memoir79, 1960, pp. 39–104.

  • Gu, J.-C., Rice, J. R., Ruina, A. L. andTse, S. T. (1984), Slip motion and stability of a single degree of freedom elastic system with rate and state dependent friction. J. Mech. Phys. Solids32, 167–196.

    Google Scholar 

  • Hanks, T. C. (1977),Earthquake stress-drops, ambient tectonic stresses and stresses that drive plate motions. Pure Appl. Geophys. 115, 441–458.

    Google Scholar 

  • Heard, H. C., ‘Steady-state flow in polycrystalline halite at pressure of 2 kilobars’, inFlow and Fracture of Rocks (eds. Heard, H.C., Borg, I. Y., Carter, N. L., and Raleigh, C. B.). Am. Geophys. Union Monogr. 16, 1972, pp. 191–209.

  • Heard, H. C. (1976),Comparison of the flow properties of rocks at crustal conditions. Phil. Trans. Roy. Soc. London, Ser. A283, 173–186.

    Google Scholar 

  • Kirby, S. H. (1983),Rheology of the lithosphere. Rev. Geophys. Space Phys.21, 1458–1487.

    Google Scholar 

  • Kirby, S. H. (1983),Rheology of the lithosphere. Rev. Geophys. Space Phys.21 1458–1487.

    Google Scholar 

  • Lachenbruch, A. H. (1979),Heat flow and stress in the San Andreas fault zone (abstract). EOS Trans. Am. Geophys. Union60, 955.

    Google Scholar 

  • Lachenbruch, A. H., andSass, J. H., ‘Thermomechanical aspects of the San Andreas fault system’, inProc. Conf. Tectonic Problems San Andreas Fault System (eds. Nur, A., and Kovach, R.), Stanford Univ. Publ., 1973, pp. 192–205.

  • Li, V. C. andRice, J. R. (1983),Preseismic rupture progression and great earthquake instabilities at plate boundaries. J. Geophys. Res.88, 4231–4246.

    Google Scholar 

  • McConnell, R. K., Jr. (1968),Viscosity of the mantle from relaxation time spectra of isostatic adjustment. J. Geophys. Res.73, 7089–7105.

    Google Scholar 

  • Melosh, J. (1977), Shear stress on the base of a lithospheric plate. Pure Appl. Geophys.115, 429–439.

    Google Scholar 

  • Minster, J. B. andJordan, T. H. (1978),Present-day plate motions. J. Geophys. Res.83, 5331–5354.

    Google Scholar 

  • Nemat-Nasser, S., ‘On constitutive behavior of fault materials’, inSolid Earth Geophysics and Geotechnology (ed. Nemat-Nasser, S.). AMD-42, ASME, 1980, pp. 31–37.

  • Nemat-Nasser, S. andShokooh, A. (1980)On finite plastic flows of compressible materials with internal friction. Int. J. Solids Structs.16, 495–514.

    Google Scholar 

  • Nur, A., ‘Rupture mechanics of plate boundaries’, inEarthquake Prediction, An International Review, Maurice Ewing Series, Vol. 4 (eds. Simpson, D. W., and Richards, P. G.). Am. Geophys. Union, Washington, D. C. 1981) pp. 629–634.

    Google Scholar 

  • Nur, A. andMavko, G. M. (1974),Postseismic viscoelastic rebound. Science183, 204–206.

    Google Scholar 

  • Paterson, M. S., ‘Experimental deformation of minerals and rocks under pressure’, inMechanical Behavior of Materials under Pressure. (ed. Pugh, H. U. D.). Elsevier Publ., Amsterdam, 1970, pp. 191–255.

    Google Scholar 

  • Prescott, W. H. andNur, A. (1981),The accommodation of relative motion at depth on the San Andreas fault system in California. J. Geophys. Res.86, 999–1004.

    Google Scholar 

  • Prescott, W. H., Savage, J. C., andKinoshita, W. T. (1979),Strain accumulation rates in the western United States between 1970 and 1978. J. Geophys. Res.84 5423–5435.

    Google Scholar 

  • Rice, J. R., ‘The Mechanics of Earthquake Rupture’, inPhysics of the Earth's Interior (ed. Dziewonski, A. M. and Boschi, E.). Italian Phys. Soc., North Holland, Amsterdam, 1980, pp. 555–649.

    Google Scholar 

  • Rice, J. R. (1983),Constitutive relations for fault slip and Earthquake instabilities. Pure Appl. Geophys. 121, 443–475.

    Google Scholar 

  • Rice, J. R. andRudnicki, J. W. (1979),Earthquake precursory effects due to pore fluid stabilization of a weakening fault zone. J. Geophys. Res.84, 2177–2193.

    Google Scholar 

  • Rice, J. R. andRuina, A. L. (1983),Stability of steady frictional slipping. Trans. ASME, J. Appl. Mech.50, 343–349.

    Google Scholar 

  • Richardson, R. M. andSolomon, S. C. (1977),Apparent stress and stress-drop for intra-plate earthquakes and tectonic stress in the plates. Pure Appl. Geophys. 115, 317–331.

    Google Scholar 

  • Richardson, R. M., Solomon, S. C. andSleep, N. H. (1979),Tectonic stress in the plates. Rev. Geophys. Space Phys.17, 981–1019.

    Google Scholar 

  • Rowshandel, B. andNemat-Nasser, S. (1986),Finite strain rock plasticity: Stress triaxiality, pressure, and temperature effects. J. Soil Dyn. Earthq. Eng. (in print).

  • Rudnicki, J. W. (1977),The inception of faulting in a rock mass with a weakened zone. J. Geophys. Res.82, 844–854.

    Google Scholar 

  • Rudnicki, J. W. ‘An inclusion model for processes preparatory to earthquake faulting’, inSolid Earth Geophysics and Geotechnology (ed. Nemat-Nasser, S.) AMD-42, ASME, 1980a.

  • Rudnicki, J. W. (1980b),Fracture mechanics applied to the Earth's crust, Ann. Rev. Earth Planet. Sci.8, 489–525.

    Google Scholar 

  • Ruina, A. L. (1983),Slip instability and state variable friction laws. J. Geophys. Res.88, 10359–10370.

    Google Scholar 

  • Rundle, J. B. (1983),Models of crustal deformation. Rev. Geophys. Space Phys.21, 1454–1458.

    Google Scholar 

  • Rybicki, K. (1971),The elastic residual field of a very long strike-slip fault in the presence of a discontinuity. Bull. Seisomol. Soc. Am.61, 79–92.

    Google Scholar 

  • Savage, J. C. (1975),Comment on ‘Analysis of strain accumulation on a strike-slip fault’ by Turcotte, D. L. and Spence. D. A. J. Geophys. Res.80 4111–4114.

    Google Scholar 

  • Savage, J. C. (1983),Strain accumulation in western United States. Ann. Rev. Earth Planet. Sci.11, 11–43

    Google Scholar 

  • Savage, J. C. andBurford, R. O. (1973),Geodetic determination of relative plate motion in central California. J. Geophys. Res.78, 832–845.

    Google Scholar 

  • Savage, J. C. andPrescott, W. H. (1978),Asthenosphere readjustment and the earthquake cycle. J. Geophys. Res.83, 3369–3376.

    Google Scholar 

  • Shelton, G. andTullis, J. (1981),Experimental flow laws for crustal rocks. EOS, Trans. Am. Geophys. Union62, 396.

    Google Scholar 

  • Sibson, R. H. (1977),Fault rocks and fault mechanisms. J. Geol. Soc. London133, 191–213.

    Google Scholar 

  • Sieh, K. E. (1978a),Slip along the San Andreas fault associated with the great 1857 earthquake. Bull. Seismol. Soc. Am.68, 1421–1448.

    Google Scholar 

  • Sieh, K. E. (1978b),Prehistoric large earthquakes produced by slip on the San Andreas fault at Pallett Creek, California. J. Geophys. Res.83, 3907–3939.

    Google Scholar 

  • Steketee, J. A. (1958),Some geophysical applications of the elasticity theory of dislocations. Can. J. Phys.36, 1168–1198.

    Google Scholar 

  • Stuart, W. D. (1979),Strain softening prior to two-dimensional strike-slip earthquakes. J. Geophys. Res.84, 1063–1070.

    Google Scholar 

  • Stuart, W. D. (1981),Stiffness method for anticipating earthquakes. Bull. Seismol. Soc. Am.71, 363–370.

    Google Scholar 

  • Stuart, W. D. andMavko, G. M. (1979),Earthquake instability on a strike-slip fault. J. Geophys. Res.84, 2153–2160.

    Google Scholar 

  • Thatcher, W. (1975a),Strain accumulation and release mechanism of the 1906 San Francisco earthquake. J. Geophys. Res.80, 4862–4872.

    Google Scholar 

  • Thatcher, W. (1975b),Strain accumulation on the northern San Andreas fault zone since 1906. J. Geophys. Res.80, 4873–4880.

    Google Scholar 

  • Thatcher, W. (1979a),Systematic inversion of geodetic data in central California. J. Geophys. Res.84, 2283–2295.

    Google Scholar 

  • Thatcher, W. (1979b),Horizontal crustal deformation from historic geodetic measurements in southern California. J. Geophys. Res.84, 2351–2370.

    Google Scholar 

  • Thatcher, W. (1979c),Crustal movements and earthquake-related deformation. Rev. Geophys. Space Phys.17, 1403–1411.

    Google Scholar 

  • Thatcher, W., ‘Crustal deformation studies and earthquake prediction research’, inEarthquake Prediction: An International Review, Maurice Ewing Series Vol. 4 (eds. Simpson, D. W., and Richards, P. G.). Am. Geophys. Union, Washington, D.C., 1981, pp. 394–410.

    Google Scholar 

  • Thatcher, W. (1983),Nonlinear strain build-up and the earthquake cycle on the San Andreas fault. J. Geophys. Res.88, 5893–5902.

    Google Scholar 

  • Thatcher, W., Matsuda, T., Kato, T. andRundle, J. B. (1980)Lithospheric loading by the 1896 Riju-u earthquake, northern Japan: Implications for plate flexture and asthenospheric rheology. J. Geophys. Res.85, 6429–6435.

    Google Scholar 

  • Tullis, J. A. (1979),High temperature deformation of rocks and minerals. Rev. Geophys. Space Phys.17, 1137–1154.

    Google Scholar 

  • Tullis, T. E. andWeeks, J. D. (1986),Constitutive behavior and stability of frictional sliding of granite. Pure Appl. Geophys.124, 383–414.

    Google Scholar 

  • Turcotte, D. L. Clancy, R. T. Spence, D. A. andKulhawy, F. H. (1979),Mechanisms for the accumulation and release of stress on the San Andreas fault. J. Geophys. Res.84, 2273–2282.

    Google Scholar 

  • Turcotte, D. L. andSpence, D. A. (1974),An analysis of strain accumulation on a strike-slip fault, J. Geophys. Res.79, 4407–4412.

    Google Scholar 

  • Turcotte, D. L., Tag, P. H. andCooper, R. F. (1980),A steady state model for the distribution of stress and temperature on the San Andreas fault. J. Geophys. Res.85, 6224–6230.

    Google Scholar 

  • Walcott, R. I. (1970),Flextural rigidity, thickness, and viscosity of the lithosphere. J. Geophys. Res.75, 3941–3954.

    Google Scholar 

  • Weertman, J. (1965),Relationship between displacements on a free surface and the stress on a fault. Bull. Seismol. Soc. Am.55, 945–953.

    Google Scholar 

  • Yuen, D. A., Fleitout, L. andSchubert, G. (1978),Shear deformation zones along major transform faults and subducting slabs. Geophys. J. Roy. Astr. Soc.54, 93–119.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rowshandel, B., Nemat-Nasser, S. A mechanical model for deformation and earthquakes on strike-slip faults. PAGEOPH 124, 531–566 (1986). https://doi.org/10.1007/BF00877215

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00877215

Key words

Navigation