Skip to main content
Log in

Application of the emanation method to the study of conversions of heteropoly compounds

  • Inorganic and Analytical Chemistry
  • Published:
Bulletin of the Academy of Sciences of the USSR, Division of chemical science Aims and scope

Summary

  1. 1.

    The emanation method was used to study the processes occurring during the heating of barium phosphotungstate.

  2. 2.

    The emanation of the salt at room temperature is higher, the higher its water content.

  3. 3.

    Regardless of the initial water content of the original hydrates, the changes occurring during heating above 60‡ are the same in character.

  4. 4.

    Over the temperature range from 100 to 200‡, where a large amount of water is lost, dehydration is not accompanied by a substantial change in emanation.

  5. 5.

    Practically complete dehydration (350‡) is not connected with the decomposition of the heteropolyanion, which is quite stable and begins to decompose at 580‡.

  6. 6.

    Barium phosphate and tungsten trioxide were found among the thermal decomposition products of barium phosphotungstate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. L. S. Kolovrat-Chervinskii, Work of the Radium Expedition of the Russian Academy of Sciences, No. 9 (1918); Le Radium4, 317 (1907);6, 321 (1909).

  2. K. Zimmens, Z. phys. Chem. A.191, 1, 95 (1942); S. Flugge and K. Zimmens, Z. phys. Chem. B.42, 179 (1939).

    Google Scholar 

  3. K. Zimmens, Z. phys. Chem. B.37, 231 (1937);192, I (1943).

    Google Scholar 

  4. G. M. Zhabrova, M. D. Sinitsyna, and S. Z. Roginskii, Dokl. AN SSSR117, 255 (1957).

    Google Scholar 

  5. K. B. Zaborenko, A. M. Babeshkin, and V. A. Georgieva, Radiokhimiya, No. 3, 336 (1959).

    Google Scholar 

  6. M. Spenger, J. prakt. Chem.22, 428 (1880).

    Google Scholar 

  7. W. Gibbs, Proc. Amer. Acad.16, 122 (1881).

    Google Scholar 

  8. M. N. Sobolev, Zh. russk. fiz.-khim. obsh.28, 187 (1896).

    Google Scholar 

  9. A. Rosenheim, and J. Jaenicke, Z. anorgan. Chem.101, 854 (1907).

    Google Scholar 

  10. A. Ferrari, L. Cavalka, and M. Nardelli, Gazz. chem. ital.78, 551 (1948).

    Google Scholar 

  11. E. A. Nikitina and N. E. Kulakova, Z. neorgan. khimii4, 564 (1959).

    Google Scholar 

  12. G. Brauer, Textbook of Preparative Inorganic Chemistry [Russian translation], IL, 1956.

  13. E. A. Nikitina, Z. obshch. khimii7, 889, 2609 (1937); E. A. Nikitina and O. N. Sokolova, Z. obshch. khimii23, 1437 (1953).

    Google Scholar 

  14. A. V. Rakovskii and E. A. Nikitina, Z. obshch. khimii1, 240 (1931).

    Google Scholar 

  15. A. M. Babeshkin, V. I. Baranov, and K. B. Zaborenko, Zavodsk. laboratoriya, No. 8, 996 (1958).

    Google Scholar 

  16. B. Sabortschev, Z. phys. Chem. A.176, 295 (1931).

    Google Scholar 

  17. E. Ya. Rode, Z. neorgan. khimii3, 2717 (1958).

    Google Scholar 

  18. A. A. Babad-Zakhryapin, Z. neorgan. khimii3, 2313 (1958).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spitsyn, V.I., Zaborenko, K.B., Radicheva, M.A. et al. Application of the emanation method to the study of conversions of heteropoly compounds. Russ Chem Bull 10, 3–8 (1961). https://doi.org/10.1007/BF00909394

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00909394

Keywords

Navigation