Skip to main content
Log in

Behavioural consequences of neural transplantation

  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Neural grafts can reverse many functional deficits associated with brain damage, whether of traumatic, toxic, neurodegenerative or genetic origin. In some model systems recovery can be partial or complete, whereas in others the grafts have limited effects or may actually cause further dysfunction. In order to devise rational and effective transplantation strategies it is necessary to understand the mechanisms by which grafts exert their functional effects. Several alternatives have been proposed, and these include non-specific consequences of surgery, acute diffuse neurotrophic and growth mechanisms, chronic diffuse release of deficient neurochemicals, bridging tissues for host regeneration, diffuse reinnervation of the host brain, and reciprocal graft-host reconnection. These alternative mechanisms are not necessarily exclusive in any particular situation, and all have been seen to apply in different model systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aebischer P, Tresco PA, Sagen J, Winn SR (1991) Transplantation of microencapsulated bovine chromaffin cells reduces lesion-induced rotational asymmetry in rats. Brain Res 560: 43–49

    Google Scholar 

  2. Annett LE, Reading PJ, Tharumaratnam D, Abrous DN, Torres EM, Dunnett SB (1993) Conditioning versus priming of dopaminergic grafts by amphetamine. Exp Brain Res 93: 46–54

    Google Scholar 

  3. Azmitia EC, Björklund A (1987) Cell and Tissue Transplantation into the Adult Brain, The New York Academy of Sciences, New York

    Google Scholar 

  4. Becker JB, Robinson TE, Barton P, Sintov A, Siden R, Levy RJ (1990) Sustained behavioral recovery from unilateral nigrostriatal damage produced by the controlled release of dopamine from a silicone polymer pellet placed into the denervated striatum. Brain Res 508: 60–64

    Google Scholar 

  5. Beckstead RM (1989) An autoradiographic examination of corticocortical and subcortical projections of the mediodorsal-projection (prefrontal) cortex in the rat. J Comp Neurol 184: 43–62

    Google Scholar 

  6. Björklund A, Dunnett SB, Stenevi U, Lewis ME, Iversen SD (1980) Reinnervation of the denervated striatum by substantia nigra transplants: functional consequences as revealed by pharmacological and sensorimotor testing. Brain Res 199: 307–333

    Google Scholar 

  7. Björklund A, Lindvall O, Isacson O, Brundin P, Wictorin K, Strecker RE, Clarke DJ, Dunnett SB (1987) Mechanisms of action of intracerebral neural implants — studies on nigral and striatal grafts to the lesioned striatum. Trends Neurosci 10: 509–516

    Google Scholar 

  8. Björklund A, Stenevi U (1979) Reconstruction of the nigrostriatal dopamine pathway by intracerebral transplants. Brain Res 177: 555–560

    Google Scholar 

  9. Björklund A, Stenevi U (1985) Neural Grafting in the Mammalian CNS, Elsevier, Amsterdam

    Google Scholar 

  10. Brundin P, Barbin G, Strecker RE, Isacson O, Prochiantz A, Björklund A (1988) Survival and function of dissociated rat dopamine neurons grafted at different developmental stages or after being cultured in vitro. Dev Brain Res 39:233–243

    Google Scholar 

  11. Brundin P, Björklund A, Lindvall O (1990) Practical aspects of the use of human fetal brain tissue for intracerebral grafting. Prog Brain Res 82: 707–714

    Google Scholar 

  12. Brundin P, Isacson O, Björklund A (1985) Monitoring of cell viability in suspensions of embryonic CNS tissue and its use as a criterion for intracerebral graft survival. Brain Res 331: 251–259

    Google Scholar 

  13. Brundin P, Nilsson OG, Gage FH, Björklund A (1985) Cyclosporin-A increases survival of cross-species intrastriatal grafts of embryonic dopamine containing neurons. Exp Brain Res 60: 204–208

    Google Scholar 

  14. Brundin P, Strecker RE, Widner H, Clarke DJ, Nilsson OG, Astedt B, Lindvall O, Björklund A (1988) Human fetal dopamine neurons grafted in a rat model of Parkinson's disease: immunological aspects, spontaneous and drug-induced behavior, and dopamine release. Exp Brain Res 70: 192–208

    Google Scholar 

  15. Carey RJ (1986) A conditioned antiparkinsonian drug effect in the hemiparkinsonian rat. Psychopharmacology 89:269–272

    Google Scholar 

  16. Coffey PJ, Lund RD, Rawlins JNP (1989) Retinal transplant-mediated learning in a conditioned suppression task in rats. Proc Nall Acad Sci USA 86:7248–7249

    Google Scholar 

  17. Coffey PJ, Lund RD, Rawlins JNP (1990) Detecting the world through a retinal implant. Prog Brain Res 82: 269–275

    Google Scholar 

  18. Collier TJ, Gash DM, Sladek JR (1988) Transplantation of norepinephrine neurons into aged rats improves performance in a learned task. Brain Res 448: 77–87

    Google Scholar 

  19. Divac I (1968) Effects of prefrontal and caudate lesions on delayed response in cats. Acta Neurobiol Exp 28: 149–167

    Google Scholar 

  20. Divac I, Markowitsch HJ, Pritzel M (1978) Behavioural and anatomical consequences of small intrastriatal injections of kainic acid in the rat. Brain Res 151: 523–532

    Google Scholar 

  21. Divac I, Rosvold HE, Szwarebart MK (1967) Behavioral effects of selective ablation of the caudate nucleus. J Comp Physiol Psychol 63: 184–190

    Google Scholar 

  22. Dunnett SB (1991) Transplantation of embryonic dopamine neurons: what we know from rats? J Neurol 238: 65–74

    Google Scholar 

  23. Dunnett SB, Annett LE (1991) Nigral transplants in primate models of parkinsonism. In: Lindvall O, Björklund A, Widner H (eds) Intracerebral Transplantation in Movement Disorders. Elsevier, Amsterdam, pp 27–50

    Google Scholar 

  24. Dunnett SB, Badman F, Rogers DC, Evenden JL, Iversen SD (1988) Cholinergic grafts in the neocortex or hippocampus of aged rats -reduction of delay-dependent deficits in the delayed non-matching to position task. Exp Neurol 102: 57–64

    Google Scholar 

  25. Dunnett SB, Björklund A (1992) Neural Transplantation: A Practical Approach, IRL Press, Oxford

    Google Scholar 

  26. Dunnett SB, Björklund A (1994) Mechanisms of function of neural grafts in the injured brain. In: Dunnett SB, Björklund A (eds) Functional Neural Transplantation. Raven Press, New York pp 531–567

    Google Scholar 

  27. Dunnett SB, Björklund A, Schmidt RH, Stenevi U, Iversen SD (1983) Intracerebral grafting of neuronal cell suspensions. V. Behavioral recovery in rats with bilateral 6-OHDA lesions following implantation of nigral cell suspensions. Acta Physiol Scand suppl 522: 39–47

    Google Scholar 

  28. Dunnett SB, Björklund A, Schmidt RH, Stenevi U, Iversen SD (1983) Intracerebral grafting of neuronal cell suspensions. IV. Behavioral recovery in rats with unilateral 6-OHDA lesions following implantation of nigral cell suspensions in different forebrain sites. Acta Physiol Scand suppl 522: 29–37

    Google Scholar 

  29. Dunnett SB, Björklund A, Stenevi U, Iversen SD (1981) Behavioral recovery following transplantation of substantia nigra in rats subjected to 6-OHDA lesions of the nigrostriatal pathway. 1. Unilateral lesions. Brain Res 215: 147–161

    Google Scholar 

  30. Dunnett SB, Björklund A, Stenevi U, Iversen SD (1981) Behavioral recovery following transplantation of substantia nigra in rats subjected to 6-OHDA lesions of the nigrostriatal pathway. 2. Bilateral lesions. Brain Res 229: 457–470

    Google Scholar 

  31. Dunnett SB, Björklund A, Stenevi U, Iversen SD (1981) Grafts of embryonic substantia nigra reinnervating the ventrolateral striatum ameliorate sensorimotor impairments and akinesia in rats with 6-OHDA lesions of the nigrostriatal pathway. Brain Res 229: 209–217

    Google Scholar 

  32. Dunnett SB, Hernandez TD, Summerfield A, Jones GH, Arbuthnott GW (1988) Graft-derived recovery from 6OHDA lesions: specificity of ventral mesencephalic graft tissues. Exp Brain Res 71: 411–424

    Google Scholar 

  33. Dunnett SB, Isacson O, Sirinathsinghji DJS, Clarke DJ, Björklund A (1988) Striatal grafts in rats with unilateral neostriatal lesions. III. Recovery from dopamine-dependent motor asymmetry and deficits in skilled paw reaching. Neuroscience 24: 813–820

    Google Scholar 

  34. Dunnett SB, Iversen SD (1981) Learning impairments following selective kainic acid-induced lesions within the neostriatum of rats. Behav Brain Res 2: 189–209

    Google Scholar 

  35. Dunnett SB, Low WC, Iversen SD, Stenevi U, Björklund A (1982) Septal transplants restore maze learning in rats with fornix-fimbria lesions. Brain Res 251: 335–348

    Google Scholar 

  36. Dunnett SB, Richards SJ (1990) Neural Transplantation: From Molecular Basis to Clinical Application, Elsevier, Amsterdam

    Google Scholar 

  37. Dunnett SB, Robbins TW (1992) The functional role of the mesotelencephalic dopamine systems. Biol Rev 67: 491–518

    Google Scholar 

  38. Dunnett SB, Rogers DC, Richards SJ (1989) Nigrostriatal reconstruction after 6-OHDA lesions in rats: combination of dopamine-rich nigral grafts and nigrostriatal bridge grafts. Exp Brain Res 75: 523–535

    Google Scholar 

  39. Dunnett SB, Whishaw IQ, Jones GH, Isacson O (1986) Effects of dopaminerich grafts on conditioned rotation in rats with unilateral 6-hydroxydopamine lesions. Neurosci Lett 68: 127–133

    Google Scholar 

  40. Dunnett SB, Whishaw IQ, Rogers DC, Jones GH (1987) Dopamine-rich grafts ameliorate whole body motor asymmetry and sensory neglect but not inde pendent limb use in rats with 6-hydroxydopamine lesions. Brain Res 415: 63–78

    Google Scholar 

  41. Ferrari G, Toffano G, Skaper SD (1991) Epidermal growth factor exerts neuronotrophic effects on dopaminergic and GABAergic CNS neurons: comparison with basic fibroblast growth factor. J Neurosci Res 30: 493–497

    Google Scholar 

  42. Finger S, Dunnett SB (1989) Nimodipine enhances growth and vascularization of neural grafts. Exp Neurol 104: 1–9

    Google Scholar 

  43. Fray PJ, Dunnett SB, Iversen SD, Björklund A, Stenevi U (1983) Nigral transplants reinnervating the dopamine-depleted neostriatum can sustain intracranial self stimulation. Science 219: 416–419

    Google Scholar 

  44. Freed CR, Breeze RE, Rosenberg NL, Schneck SA, Kriek E, Qi J, Lone T, Zhang L, Snyder JA, Wells TH, Ramig LO, Thompson L, Mazziotta JC, Huang SC, Grafton ST, Brooks D, Sawle G, Schroter G, Ansari AA (1992) Survival of implanted fetal dopamine cells and neurologic improvement 12 to 46 months after transplantation for Parkinson's disease. New Engl J Med 327: 1549–1555

    Google Scholar 

  45. Freed WJ (1983) Functional brain tissue transplantation: reversal of lesion-induced rotation by intraventricular substantia nigra and adrenal medulla grafts, with a note on intracranial retinal grafts. Biol Psychiat 18: 1205–1267

    Google Scholar 

  46. Freed WJ, Cannon-Spoor HE, Krauthamer E (1985) Factors influencing the efficacy of adrenal medulla and embryonic substantia nigra grafts. In: Björklund A, Stenevi U (eds) Neural Transplantation in the Mammalian CNS. Elsevier, Amsterdam, pp 491–504

    Google Scholar 

  47. Freed WJ, Perlow MJ, Karoum F, Seiger Å, Olson L, Hoffer BJ, Wyatt RJ (1980) Restoration of dopaminergic function by grafting of fetal rat substantia nigra to the caudate nucleus: long term behavioral, biochemical, and histochemical studies. Ann Neurol 8: 510–519

    Google Scholar 

  48. Gage FH, Björklund A, Stenevi U, Dunnett SB, Keldy PAT (1984) Intrahippocampal septal grafts ameliorate learning impairments in aged rats. Science 225: 533–536

    Google Scholar 

  49. Gash D, Sladek JR, Sladek CD (1980) Functional development of grafted vasopressin neurons. Science 210: 1367–1369

    Google Scholar 

  50. Gash DM, Sladek JR (1988) Transplantation into the Mammalian CNS, Elsevier, Amsterdam

    Google Scholar 

  51. Geschwind N (1965) Disconnexion syndromes in animals and man. Part I. Brain 88: 237–294

    Google Scholar 

  52. Giacobini MMJ, Strömberg I, Almström S, Cao Y, Olson L (1993) Fibroblast growth factors enhance dopamine fiber formation from nigral grafts. Dev Brain Res 75: 65–73

    Google Scholar 

  53. Goetz CG, DeLong MR, Penn RD, Bakay RAE (1993) Neurosurgical horizons in Parkinson's disease. Neurology 43: 1–7

    Google Scholar 

  54. Goetz CG, Stebbins GT, Klawans HL, Koller WC, Grossman RG, Bakay RAE, Penn RD (1991) United Parkinson Foundation neurotransplantation registry on adrenal medullary transplants: presurgical, and 1-year and 2-year follow up. Neurology 41: 1719–1722

    Google Scholar 

  55. Goldman PS, Nauta WJH (1977) An intricately-patterned prefrontal-caudate projection in the rhesus monkey. J Comp Neurol 171: 369–386

    Google Scholar 

  56. Halasz B, Pupp L, Uhlarik S, Tima L (1963) Growth of hypophysectomised rats bearing pituitary transplants in the hypothalamus. Acta Physiol Acad Sci Hung 23: 287–292

    Google Scholar 

  57. Hall RD, Bloom FE, Olds J (1977) Neuronal and neurochemical substrates of reinforcement. Neurosci Res Prog Bull 15: 133–314

    Google Scholar 

  58. Hefti F, Melamed E, Sahakian BJ, Wurtman RJ (1980) Circling behavior in rats with partial, unilateral nigrostriatal lesions: effects of amphetamine, apomorphine, and DOPA. Pharmacol Biochem Behav 12: 185–188

    Google Scholar 

  59. Hodges H, Allen Y, Kershaw T, Lantos PL, Gray JA, Sinden J (1991) Effects of cholinergic-rich neural grafts on radial maze performance of rats after excitotoxic lesions of the forebrain cholinergic projection system. 1. Amelioration of cognitive deficits by transplants into cortex and hippocampus but not into basal forebrain. Neuroscience 45:587–607

    Google Scholar 

  60. Isacson O, Dunnett SB, Björklund A (1986) Graft-induced behavioral recovery in an animal model of Huntington disease. Proc Natl Acad Sci USA 83: 2728–2732

    Google Scholar 

  61. Kang UJ, Shults CW, Lucidiphillipi S, Jones KR, Reichardt LF, Gage FH (1992) Genetically modified skin fibroblast cells produce BDNF and promote survival of fetal dopaminergic cells in culture. Neurology 42: 1428

    Google Scholar 

  62. Klassen H, Lund RD (1987) Retinal transplants can drive a pupillary reflex in host rat brains. Proc Natl Acad Sci USA 84: 6958–6960

    Google Scholar 

  63. Knigge KM (1962) Gonadotrophic action of neonatal pituitary glands implanted in the rat brain. Am J Physiol 202: 387–391

    Google Scholar 

  64. Knüsel B, Michel PP, Schwaber JS, Hefti F (1990) Selective and nonselective stimulation of central cholinergic and dopaminergic development in vitro by nerve growth factor, basic fibroblast growth factor, epidermal growth factor, insulin and the insulin-like growth factors I and II. J Neurosci 10: 558–570

    Google Scholar 

  65. Krieger DT, Perlow MJ, Gibson MJ, Davies TF, Zimmerman EA, Ferin M, Charlton HM (1982) Brain grafts reverse hypogonadism of gonadotropin releasing hormone deficiency. Nature 298: 468–471

    Google Scholar 

  66. Kroin JS, Kao LC, Zhang TJ, Penn RD, Klawans HL, Carvey PM (1991) Dopamine distribution and behavioral alterations resulting from dopamine infusion into the brain of the lesioned rat. J Neurosurg 74: 105–111

    Google Scholar 

  67. Langston JW, Widner H, Goetz CG (1992) Core assessment program for intracerebral transplantation (CAPIT). Mov Dis 7: 2–13

    Google Scholar 

  68. Lin L-FH, Doherty DH, Lile JD, Bektesh S, Collins F (1993) GDNF: A glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science 260: 1130–1132

    Google Scholar 

  69. Lindvall O (1991) Prospects of transplantation in human neurodegenerative diseases. Trends Neurosci 14: 376–384

    Google Scholar 

  70. Lindvall O, Björklund A (1989) Transplantation strategies in the treatment of Parkinson's disease: experimental basis and clinical trials. Acta Neurol Scand 80: 197–210

    Google Scholar 

  71. Lindvall O, Björklund A, Widner H (1991) Intracerebral Transplantation in Movement Disorders, Elsevier, Amsterdam

    Google Scholar 

  72. Lindvall O, Brundin P, Widner H, Rehncrona S, Gustavii B, Frackowiak R, Leenders KL, Sawle G, Rothwell JC, Marsden CD, Björklund A (1990) Grafts of fetal dopamine neurons survive and improve motor function in Parkinson's disease. Science 247: 574–577

    Google Scholar 

  73. Lindvall O, Widner H, Rehncrona S, Brundin P, Odin P, Gustavii B, Frackowiak R, Leenders KL, Sawle G, Rothwell JC, Björklund A, Marsden CD (1992) Transplantation of fetal dopamine neurons in Parkinson's disease: one year clinical and neurophysiological observations in 2 patients with putaminal implants. Ann Neurol 31: 155–165

    Google Scholar 

  74. Lund RD, Radel JD, Coffey PJ (1991) The impact of intracerebral retinal transplants on types of behavior exhibited by host rats. Trends Neurosci 14: 358–362

    Google Scholar 

  75. Madrazo I, Drucker-Colín R, Díaz V, Martínez-Mats J, Torres C, Becerril JJ (1987) Open microsurgical autograft of adrenal medulla to the right caudate nucleus in two patients with intractable Parkinson's disease. New Engl J Med 316: 831–834

    Google Scholar 

  76. Mandel RJ, Brundin P, Björklund A (1990) The importance of graft placement and task complexity for transplant induced recovery of simple and complex sensorimotor deficits in dopamine denervated rats. Eur J Neurosci 2: 888–894

    Google Scholar 

  77. Mayer E, Brown VJ, Dunnett SB, Bobbins TW (1992) Striatal graft-associated recovery of a lesion-induced performance deficit in the rat requires learning to use the transplant. Eur J Neurosci 4: 119–126

    Google Scholar 

  78. Mayer E, Dunnett SB, Fawcett JW (1993) Mitogenic effect of basic fibroblast growth factor on embryonic ventral mesencephalic dopaminergic neurone precursors. Dev Brain Res 72: 253–258

    Google Scholar 

  79. Mayer E, Dunnett SB, Pellitier R, Fawcett JW (1993) Basic fibroblast growth factor promotes the survival of embryonic ventral mesencephalic dopaminergic neurons. I. Effects in vitro. Neuroscience 56: 379–388

    Google Scholar 

  80. Mayer E, Fawcett JW, Dunnett SB (1993) Basic fibroblast growth factor promotes the survival of embryonic ventral mesencephalic dopaminergic neurones. II. Effects on neural transplants in vivo. Neuroscience 56: 389–398

    Google Scholar 

  81. McGeorge AJ, Faull RLM (1989) The organiszation of the projection from the cerebral cortex to the striatum in the rat. Neuroscience 29: 503–537

    Google Scholar 

  82. Montoya CP, Astell S, Dunnett SB (1990) Effects of nigral and striatal grafts on skilled forelimb use in the rat. Prog Brain Res 82: 459–466

    Google Scholar 

  83. Nilsson OG, Shapiro ML, Gage FH, Olton DS, Björklund A (1987) Spatial learning and memory following fimbria-fornix transection and grafting of fetal septal neurons to the hippocampus. Exp Brain Res 67: 195–215

    Google Scholar 

  84. Perlow MJ, Freed WJ, Hoffer BJ, Seiger Å, Olson L, Wyatt RJ (1979) Brain grafts reduce motor abnormalities produced by destruction of nigrostriatal dopamine system. Science 204: 643–647

    Google Scholar 

  85. Quinn NP (1990) The clinical application of cell grafting techniques in patients with Parkinson's disease. Prog Brain Res 82: 619–625

    Google Scholar 

  86. Ralph MR, Foster RG, Davis FC, Menaker M (1990) Transplanted suprachiasmiatic nucleus determines circadian period. Science 247: 975–978

    Google Scholar 

  87. Reading PJ, Torres EM, Dunnett SB (1994) Embryonic striatal grafts ameliorate the disinhibitory effects of ventral striatal lesions. Exp Brain Res (in press)

  88. Sawle GV, Myers R (1993) The role of positron emission tomography in the assessment of human neurotransplantation. Trends Neurosci 16: 172–176

    Google Scholar 

  89. Schmidt RH, Björklund A, Stenevi U, Dunnett SB, Gage FH (1983) Intracerebral grafting of neuronal cell suspensions. III. Activity of intrastriatal nigral suspension implants as assessed by measurements of dopamine synthesis and metabolism. Acta Physiol Scand suppl 522: 19–28

    Google Scholar 

  90. Schmidt RH, Ingvar M, Lindvall O, Stenevi U, Björklund A (1982) Functional activity of substantia nigra grafts reinnervating the striatum: neurotransmitter metabolism and [14C]2-deoxyd-glucose autoradiography. J Neurochem 38: 737–748

    Google Scholar 

  91. Sladek JR, Shoulson I (1988) Neural transplantation: a call for patience rather than patients. Science 240: 1386–1388

    Google Scholar 

  92. Spencer DD, Robbins RJ, Naftolin F, Marek KL, Vollmer T, Leranth C, Roth RH, Price LH, Gjedde A, Bunney BS, Sass KJ, Elsworth JD, Kier EL, Makuch R, Hoffer PB, Redmond DE (1992) Unilateral transplantation of human fetal mesencephalic tissue into the caudate nucleus of patients with Parkinson's disease. New Engl J Med 327: 1541–1548

    Google Scholar 

  93. Stenevi U, Björklund A, Svendgaard N-Aa (1976) Transplantation of central and peripheral monoamine neurons to the adult rat brain: techniques and conditions for survival. Brain Res 114: 1–20

    Google Scholar 

  94. Wictorin K (1992) Anatomy and connectivity of intrastriatal striatal transplants. Prog Neurobiol 38: 611–639

    Google Scholar 

  95. Widner H, Tetrud J, Rehncrona S, Snow B, Brundin P, Gustavii B, Björklund A, Lindvall O, Langston JW (1992) Bilateral fetal mesencephalic grafting in 2 patients with Parkinsonism induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). New Engl J Med 327: 1556–1563

    Google Scholar 

  96. Winn SR, Wahlberg L, Tresco PA, Aebischer P (1989) An encapsulated dopamine-releasing polymer alleviates experimental parkinsonism in rats. Exp Neurol 105: 244–250

    Google Scholar 

  97. Wood MJA, Charlton HM (1994) Hypothalamic grafts and neuroendocrine function. In: Dunnett SB, Björklund A (eds) Functional Neural Transplantation. Raven Press, New York pp 451–466

    Google Scholar 

  98. Yurek DM, Sladek JR (1990) Dopamine cell replacement: Parkinson's disease. Ann Rev Neurosci 13: 415–440

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dunnett, S.B. Behavioural consequences of neural transplantation. J Neurol 242 (Suppl 1), S43–S53 (1994). https://doi.org/10.1007/BF00939242

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00939242

Keywords

Navigation