Skip to main content
Log in

16 S acetylcholinesterase in endplate-free regions of developing rat diaphragm

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Velocity sedimentation patterns of acetylcholinesterase (AChE, EC 3.7.1.1) in endplate-free regions of the diaphragm were studied in rats during early postnatal development. A significant amount of 16 S AChE, comprising 20% total activity, was found in endplate-free regions of the diaphragm of 8- and 19-day-old rats. By 32 days after birth, 16 S AChE accounted for less than 5% total AChE activity in endplate-free regions. 16 S AChE is, therefore, not strictly an endplate-specific molecular form. Instead, it becomes restricted to the motor endplate region of the rat diaphragm by the end of the first month of life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Massoulié, J., andRieger, F. 1969. L'acétylcholinestérase des organes électriques de Poissons (torpille et gymnote); complexes membranaires. Eur. J. Biochem. 1:441–455.

    Google Scholar 

  2. Hall, Z. W. 1973. Multiple forms of acetylcholinesterase and their distribution in endplate and non-endplate regions of rat diaphragm muscle. J. Neurobiol. 4:343–361.

    Google Scholar 

  3. Rieger, F., andVigny, M. 1976. Solubilization and physicochemical characterization of rat brain acetylcholinesterase: Development and maturation of its molecular forms. J. Neurochem. 27:121–129.

    Google Scholar 

  4. Marchand, A., Chapouthier, G., andMassoulié, J. 1977. Developmental aspects of acetylcholinesterase activity in chick brain. FEBS Lett. 78:233–236.

    Google Scholar 

  5. Sketelj, J., McNamee, M. G., andWilson, B. W. 1978. Effect of denervation on the molecular forms of acetylcholinesterase in normal and dystrophic chicken muscles. Exp. Neurol. 60:624–629.

    Google Scholar 

  6. Wilson, B. W., Montgomery, M. A., andAsmundson, R. V. 1968. Cholinesterase activity and inherited muscular dystrophy of the chicken. Proc. Soc. Exp. Biol. Med. 129:199–206.

    Google Scholar 

  7. Vigny, M., Koenig, J., andRieger, F. 1976. The motor endplate specific form of acetylcholinesterase: Appearance during embryogenesis and re-innervation of rat muscle. J. Neurochem. 27:1347–1353.

    Google Scholar 

  8. Sugiyama, H. 1977. Multiple forms of acetylcholinesterase in clonal muscle cells. FEBS Lett. 84:257–260.

    Google Scholar 

  9. Koenig, J., andVigny, M. 1978. Neural induction of the 16 S acetylcholinesterase in muscle cell cultures. Nature 271:75–77.

    Google Scholar 

  10. Koelle, G. B., andFriedenwald, J. S. 1949. A histochemical method for localizing cholinesterase activity. Proc. Soc. Exp. Biol. 70:617–622.

    Google Scholar 

  11. Ellman, G. L., Courtney, D. K., Andres, V., Jr., andFeatherstone, R. M. 1961. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 7:88–95.

    Google Scholar 

  12. Beers, R. F., Jr., andSizer, I. W. 1952. A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J. Biol. Chem. 195:133–139.

    Google Scholar 

  13. Bennett, M. R., andPettigrew, A. G., 1974. The formation of synapses in striated muscle during development. J. Physiol. 241:515–545.

    Google Scholar 

  14. McLaughlin, J., Engel, K. W., andReddy, N. B. 1978. Subcellular analysis of the molecular forms of acetylcholinesterase in rat skeletal muscle. J. Neurochem. 31:783–788.

    Google Scholar 

  15. Fernandez, H. L., Duell, M. J., andFestoff, B. W. 1979. Cellular distribution of 16 S acetylcholinesterase. J. Neurochem. 32:581–585.

    Google Scholar 

  16. Weinberg, C. B., andHall, Z. W. 1979. Junctional form of acetylcholinesterase restored at nerve-free endplates. Dev. Biol. 68:631–635.

    Google Scholar 

  17. Bon, S., Vigny, M., andMassoulié, J. 1979. Asymmetric and globular forms of acetylcholinesterase in mammals and birds. Proc. Natl. Acad. Sci. U.S.A. 76:2546–2550.

    Google Scholar 

  18. Diamond, J., andMiledi, R., 1962. A study of foetal and new-born rat muscle fibres. J. Physiol. 162:393–408.

    Google Scholar 

  19. Miledi, R., andPotter, L. T. 1971. Acetylcholine receptors in muscle fibres. Nature 233:599–603.

    Google Scholar 

  20. Hartzell, H. C., andFambrough, D. M. 1972. Acetylcholine receptors: Distribution and extrajunctional density in rat diaphragm after denervation correlated with acetylcholine sensitivity. J. Gen. Physiol. 60:248–262.

    Google Scholar 

  21. Colquhoun, D., Rang, H. P., andRitchie, J. M. 1974. The binding of tetrodotoxin and α-bungarotoxin to normal and denervated mammalian muscles. J. Physiol. 240:199–226.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sketelj, J., Brzin, M. 16 S acetylcholinesterase in endplate-free regions of developing rat diaphragm. Neurochem Res 5, 653–658 (1980). https://doi.org/10.1007/BF00964786

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00964786

Keywords

Navigation